Chip Monolithic Ceramic Capacitors

muRata

Innovator in Electronics

Murata Manufacturing Co., Ltd.

CONTENTS

Par	t Numbering ————————————————————————————————————
Sel	ection Guide ————————————————————————————————————
1	for Flow/Reflow Soldering GRM15/18/21/31 Series ————————————————————————————————————
2	for Reflow Soldering GRM32/43/55 Series
3	Ultra-small GRM02/03 Series
4	Tight Tolerance GRM03/15 Series
5	Thin Type (Flow/Reflow)
	1 to 5 Specifications and Test Methods —
6	Large Capacitance Type ————————————————————————————————————
	6 Specifications and Test Methods
7	High-Q GJM Series ————————————————————————————————————
8	Tight Tolerance High-Q GJM Series
	7 . 8 Specifications and Test Methods
GRI	M Series Data
9	Microchips GMA Series ————————————————————————————————————
	9 Specifications and Test Methods —
10	Capacitor Arrays GNM Series ————————————————————————————————————
	10 Specifications and Test Methods —
11	for Ultrasonic Sensors GRM Series ————————————————————————————————————
	11 Specifications and Test Methods —
12	Low ESL LLL/LLA/LLM Series ————————————————————————————————————
	12 Specifications and Test Methods —
13	High Frequency GQM Series ————————————————————————————————————
	13 Specifications and Test Methods
14	High Frequency Type ERB Series ————————————————————————————————————
	14 Specifications and Test Methods —
ERE	3 Series Data
Pac	kage ———
<u></u>	Caution

Not	tice	— 93
Ref	erence Data	— 98
15	Medium Voltage Low Dissipation Factor	105
16	Medium Voltage High Capacitance for General-Use	110
17	Only for Information Devices/Tip & Ring	114
18	Only for Camera Flash Circuit	118
19	AC250V (r.m.s.) Type (Which Meet Japanese Law)	121
20	Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)	125
21	Safety Standard Recognized Type GD (IEC60384-14 Class Y3)	126
22	Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)	127
23	Safety Standard Recognized Type GB (IEC60384-14 Class X2)	128
GA:	3 Series Specifications and Test Methods	129
GRI	M/GR4/GR7/GA2/GA3 Series Data (Typical Example)	133
Pac	ckage	136
<u> </u>	Caution	139
Not	tice	— 145
ISO	9001 Certifications	148

• Please refer to "Specifications and Test Methods" at the end of each chapter of 15 - 19 .

Part Numbering

Chip Monolithic Ceramic Capacitors

GR M 18 8 B1 1H 102 K A01 K (Part Number)

●Product ID

2Series

3 3 6 1 6 3			
Product ID	Code	Series	
	M	Tin Plated Layer	
GR	4	Only for Information Devices / Tip & Ring	
	7	Only for Camera Flash Circuit	
ER	В	High Frequency Type	
GQ	M High Frequency for Flow/Reflow Solderi		
GM	A Monolithic Microchip		
GN	M	Capacitor Array	
	L	Low ESL Wide Width Type	
LL	Α	Eight-termination Low ESL Type	
•	M	Ten-termination Low ESL Type	
GJ	М	High Frequency Low Loss Type Tin Plated Type	
0.4	2	for AC250V (r.m.s.)	
GA	3	Safety Standard Recognized Type	

3Dimension (LXW)

Code	Dimension (LXW)	EIA	
02	0.4×0.2mm	01005	
03	0.6×0.3mm	0201	
05	0.5×0.5mm	0202	
08	0.8×0.8mm	0303	
11	1.25×1.0mm	0504	
15	1.0×0.5mm	0402	
18	1.6×0.8mm	0603	
1D	1.4×1.4mm		
1X	Depends on individual standards.		
21	2.0×1.25mm 0805		
22	2.8×2.8mm 1111		
31	3.2×1.6mm 1206		
32	3.2×2.5mm 1210		
3X	Depends on individual standards.		
42	4.5×2.0mm 180		
43	4.5×3.2mm 1812		
52	5.7×2.8mm 2211		
55	5.7×5.0mm	2220	

4Dimension (T)

Code	Dimension (T)
2	0.2mm
2	2-elements (Array Type)
3	0.3mm
4	4-elements (Array Type)
5	0.5mm
6	0.6mm
7	0.7mm
8	0.8mm
9	0.85mm
Α	1.0mm
В	1.25mm
С	1.6mm
D	2.0mm
E	2.5mm
F	3.2mm
М	1.15mm
N	1.35mm
R	1.8mm
S	2.8mm
Q	1.5mm
Х	Depends on individual standards.

With the array type GNM series, "Dimension(T)" indicates the number of

Ontinued from the preceding page.

5Temperature Characteristics

Temperature Characteristic Codes				Operating			
Code	Public STD (Code	Referance Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range	
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C	
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C	
2P	PH *1	JIS	20°C	20 to 85°C	-150±60ppm/°C	-25 to 85°C	
2R	RH *1	JIS	20°C	20 to 85°C	-220±60ppm/°C	-25 to 85°C	
28	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C	
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C	
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C	
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C	
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C	
38	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C	
3T	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C	
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C	
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C	
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C	
5G	X8G *1	EIA	25°C	25 to 150°C	0±30ppm/°C	-55 to 150°C	
6C	C0H *1	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C	
6P	P2H *1	EIA	25°C	25 to 85°C	-150±60ppm/°C	-55 to 125°C	
6R	R2H *1	EIA	25°C	25 to 85°C	-220±60ppm/°C	-55 to 125°C	
6S	S2H *1	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C	
6T	T2H *1	EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C	
7U	U2J *1	EIA	25°C	25 to 85°C	-750±120ppm/°C	-55 to 125°C	
B1	B *2	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
В3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
C 7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C	
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C	
F1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C	
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C	
L8	X8L	EIA	25°C	-55 to 150°C	+15, -40%	-55 to 150°C	
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R3	R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C	
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C	
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C	
9E	ZLM	*3	20°C	-25 to 20°C	-4700+100/-2500ppm/°C	-25 to 85°C	
JL	LLIVI		20 C	20 to 85°C -4	-4700+500/-1000ppm/°C	-23 (0 03 0	
W0	-	-	25°C	-55 to 125°C	±10% *4	-55 to 125°C	
				33 10 123 0	+22, -33% *5		

^{*1} Please refer to table for Capacitance Change under reference temperature.

^{*2} Capacitance change is specified with 50% rated voltage applied.

^{*3} Murata Temperature Characteristic Code.

^{*4} Apply DC350V bias.

^{*5} No DC bias.

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

●Capacitance Change from each temperature

JIS Code

	Capacitance Change from 20°C (%)						
Murata Code	−55°C		−25°C		−10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
1X	-	-	-	-	-	-	
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18	
2P	-	-	1.32	0.41	0.88	0.27	
2R	-	-	1.70	0.72	1.13	0.48	
2\$	-	-	2.30	1.22	1.54	0.81	
2T	-	-	3.07	1.85	2.05	1.23	
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36	
3P	-	-	1.65	0.14	1.10	0.09	
3R	-	-	2.03	0.45	1.35	0.30	
38	-	-	2.63	0.95	1.76	0.63	
3T	-	-	3.40	1.58	2.27	1.05	
3U	-	-	4.94	2.84	3.29	1.89	
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75	

EIA Code

	Capacitance Change from 25°C (%)						
Murata Code	−55°C		-30°C		-10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
5C/5G	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0.87	-0.48	0.59	-0.33	0.38	-0.21	
6P	2.33	0.72	1.61	0.50	1.02	0.32	
6R	3.02	1.28	2.08	0.88	1.32	0.56	
6S	4.09	2.16	2.81	1.49	1.79	0.95	
6T	5.46	3.28	3.75	2.26	2.39	1.44	
7U	8.78	5.04	6.04	3.47	3.84	2.21	

6 Rated Voltage

Code	Rated Voltage		
0G	DC4V		
0J	DC6.3V		
1A	DC10V		
1C	DC16V		
1E	DC25V		
1H	DC50V		
2A	DC100V		
2D	DC200V		
2E	DC250V		
YD	DC300V		
2H	DC500V		
2J	DC630V		
3A	DC1kV		
3D	DC2kV		
3F	DC3.15kV		
ВВ	DC350V (for Camera Flash Circuit)		
E2	AC250V		
GB	X2; AC250V (Safety Standard Recognized Type GB)		
GC	X1/Y2; AC250V (Safety Standard Recognized Type GC)		
GD	Y3; AC250V (Safety Standard Recognized Type GD)		
GF	Y2, X1/Y2; AC250V (Safety Standard Recognized Type GF)		

Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter " ${\bf R}$ ". In this case, all figures are significant digits.

Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

8Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Capac	tance Step	
В	±0.1pF	СΔ	GRM/GJM	≦5pF	E24 Series,1pF	
С	10.25mF	CΔ-SL	GRM/ERB/GQM	≦5pF	* 1pF	
C	±0.25pF	СΔ	GJM	<10pF	E24 Series,1pF	
	10.5%	CΔ-SL	GRM	6.0 to 9.0pF	* 1pF	
U	±0.5pF	СΔ	ERB/GQM/GJM	5.1 to 9.1pF	E24 Series	
F	±1%	СΔ	GRM03/15, GJM03/15	5.0 to 9.9pF	0.1pF	
		СΔ	GJM	≧10pF	E12 Series	
G	±2%	СΔ	GQM	≧10pF	E24 Series	
		СΔ	GRM03/15, GJM03/15	2.0 to 9.9pF	0.1pF	
	±5%	CΔ-SL	GRM/GA3	≧10pF	E12 Series	
J		СΔ	ERB/GQM/GJM	≧10pF	E24 Series	
		СΔ	GRM03/15, GJM03/15	1.0 to 4.9pF	0.1pF	
		B, R, X7R, X5R, ZLM	GRM/GR7/GA3	E6 Series		
K	±10%	D, R, A/R, A3R, ZLIVI	GR4	E1:	2 Series	
		СΔ	GRM03/15, GJM03/15	0.2 to 1.9pF	0.1pF	
		Z5U	GRM	E3	Series	
М	±20%	B, R, X7R, X7S	GRM/GMA/LLL/LLA/LLM	E6	Series	
IVI	±20%	X7R	GA2	E3	Series	
		СΔ	GRM03/15, GJM03/15	0.1 to 0.9pF	0.1pF	
Z	+80%, -20%	F, Y5V	GRM	E3 Series		
R	Depends on individual standards.					

^{*} E24 series is also available.

Individual Specification Code

Expressed by three figures.

Packaging

Code	Packaging
L	ø178mm Embossed Taping
D	ø178mm Paper Taping
K	ø330mm Embossed Taping
J	ø330mm Paper Taping
Е	ø178mm Special Packaging
F	ø330mm Special Packaging
В	Bulk
С	Bulk Case
Т	Bulk Tray

Selection Guide of Chip Monolithic Ceramic Capacitors

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

Chip Monolithic Ceramic Capacitors

for Flow/Reflow Soldering GRM15/18/21/31 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. The GRM series is a complete line of chip ceramic capacitors in 6.3V, 10V, 16V, 25V, 50V, 100V, 200V and 500V ratings. These capacitors have temperature characteristics ranging from COG to Y5V.
- 3. A wide selection of sizes is available, from the miniature LxWxT: 1.0x0.5x0.5mm to LxWxT: 3.2x1.6x1.6mm.

GRM18, 21 and GRM31 types are suited to flow and reflow soldering.

GRM15 type is applied to only reflow soldering.

Part Number		Dir	nensions (n	nm)	
Part Number	L	W	Т	е	g min.
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5
GRM216			0.6 ±0.1		
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7
GRM21A	2.0 ±0.1	1.23 ±0.1	1.0 +0/-0.2	0.2 10 0.7	0.7
GRM21B			1.25 ±0.1		
GRM316			0.6 ±0.1		
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5
GRM31M			1.15 ±0.1	0.3 10 0.6	1.5
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		

^{*} Bulk Case: 1.6 ±0.07(L) X 0.8 ±0.07(W) X 0.8 ±0.07(T)

■ Applications

General electronic equipment

Temperature Compensating Type GRM15 Series (1.00x0.50mm) 50/25V

Part Number				GR	M15			
L x W [EIA]				1.00x0.5	50 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(1	SL X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ring code)		
0.30pF(R30)	0.50 (5)							
0.40pF(R40)	0.50 (5)							
0.50pF(R50)	0.50 (5)							
0.60pF(R60)	0.50 (5)							
0.70pF(R70)	0.50 (5)							
0.75pF(R75)	0.50 (5)							
0.80pF(R80)	0.50 (5)							
0.90pF(R90)	0.50 (5)							
1.0pF(1R0)	0.50 (5)							
1.1pF(1R1)	0.50 (5)							
1.2pF(1R2)	0.50 (5)							
1.3pF(1R3)	0.50 (5)							
1.4pF(1R4)	0.50 (5)							
1.5pF(1R5)	0.50 (5)							
1.6pF(1R6)	0.50 (5)							
1.7pF(1R7)	0.50 (5)							
1.8pF(1R8)	0.50 (5)							
1.9pF(1R9)	0.50 (5)							
2.0pF(2R0)	0.50 (5)							
2.1pF(2R1)	0.50 (5)							
2.2pF(2R2)	0.50 (5)							
2.3pF(2R3)	0.50 (5)							
2.4pF(2R4)	0.50 (5)							
2.5pF(2R5)	0.50 (5)							
2.6pF(2R6)	0.50 (5)							

Continued from the preceding page.

Part Number L x W [EIA]					M15 50 [0402]			
	C0G	P2H	R2H	1		SI	T2H	U2J
TC	(5C)	(6P)	(6R)	S2H (6S)	(1	SL IX)	(6T)	(7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Din	nension (T Dimen	sion part numbe	ering code)		
2.7pF(2R7)	0.50 (5)							
2.8pF(2R8)	0.50 (5)							
2.9pF(2R9)	0.50 (5)							
3.0pF(3R0)	0.50 (5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50(5)
3.1pF(3R1)	0.50 (5)							
3.2pF(3R2)	0.50 (5)							
3.3pF(3R3)	0.50 (5)							
3.4pF(3R4)	0.50 (5)							
3.5pF(3R5)	0.50 (5)							
3.6pF(3R6)	0.50 (5)							
3.7pF(3R7)	0.50 (5)							
3.8pF(3R8)	0.50(5)							
3.9pF(3R9)	0.50(5)							
4.0pF(4R0)	0.50 (5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
4.1pF(4R1)	0.50 (5)							
4.2pF(4R2)	0.50 (5)							
4.3pF(4R3)	0.50(5)							
4.4pF(4R4)	0.50(5)							
4.5pF(4R5)	0.50(5)							
4.6pF(4R6)	0.50(5)							
4.7pF(4R7)	0.50(5)							
4.8pF(4R8)	0.50(5)							
4.9pF(4R9)	0.50(5)							
5.0pF(5R0)	0.50(5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
5.1pF(5R1)	0.50(5)							
5.2pF(5R2)	0.50(5)							
5.3pF(5R3)	0.50(5)							
5.4pF(5R4)	0.50(5)							
5.5pF(5R5)	0.50(5)							
5.6pF(5R6)	0.50(5)							
5.7pF(5R7)	0.50(5)							
5.8pF(5R8)	0.50(5)							
5.9pF(5R9)	0.50(5)							
6.0pF(6R0)	0.50(5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
6.1pF(6R1)	0.50(5)							,
6.2pF(6R2)	0.50(5)						1	
6.3pF(6R3)	0.50(5)							
6.4pF(6R4)	0.50(5)							
6.5pF(6R5)	0.50(5)						1	
6.6pF(6R6)	0.50(5)							
6.7pF(6R7)	0.50(5)							
6.8pF(6R8)	0.50(5)							
6.9pF(6R9)	0.50(5)						1	
7.0pF(7R0)	0.50(5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
7.1pF(7R1)	0.50(5)		\-/	(-/			(-/	
7.2pF(7R2)	0.50(5)							
7.3pF(7R3)	0.50(5)							
7.4pF(7R4)	0.50(5)							
7.4pr (7R4) 7.5pF(7R5)	0.50(5)							
7.6pF(7R6)	0.50(5)	+						
7.8pF(7R8)	0.50(5)							
7.7pr(7R7) 7.8pF(7R8)	0.50(5)							
7.ομε(7 κο)	0.50(3)							<u> </u>

Continued from the preceding page.

Part Number				GR	M15			
L x W [EIA]					50 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)		SL I X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Dim	nension (T Dimer	nsion part number	ering code)	L	L
7.9pF(7R9)	0.50 (5)							
8.0pF(8R0)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
8.1pF(8R1)	0.50 (5)							
8.2pF(8R2)	0.50 (5)							
8.3pF(8R3)	0.50 (5)							
8.4pF(8R4)	0.50 (5)							
8.5pF(8R5)	0.50 (5)							
8.6pF(8R6)	0.50 (5)							
8.7pF(8R7)	0.50 (5)							
8.8pF(8R8)	0.50 (5)							
8.9pF(8R9)	0.50 (5)							
9.0pF(9R0)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
9.1pF(9R1)	0.50 (5)							
9.2pF(9R2)	0.50 (5)							
9.3pF(9R3)	0.50 (5)							
9.4pF(9R4)	0.50 (5)							
9.5pF(9R5)	0.50 (5)							
9.6pF(9R6)	0.50 (5)							
9.7pF(9R7)	0.50 (5)							
9.8pF(9R8)	0.50 (5)							
9.9pF(9R9)	0.50 (5)							
10pF(100)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
12pF(120)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
15pF(150)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
18pF(180)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
22pF(220)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
27pF(270)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
33pF(330)	0.50 (5)		0.50(5)	0.50(5)			0.50(5)	0.50(5)
39pF(390)	0.50 (5)			0.50(5)			0.50(5)	0.50(5)
47pF(470)	0.50 (5)				0.50 (5)		0.50(5)	0.50(5)
56pF(560)	0.50 (5)				0.50 (5)		0.50(5)	0.50(5)
68pF(680)	0.50 (5)				0.50 (5)		0.50(5)	0.50(5)
82pF(820)	0.50 (5)				0.50 (5)		0.50(5)	0.50(5)
100pF(101)	0.50 (5)				0.50 (5)		0.50(5)	0.50(5)
120pF(121)	0.50 (5)				0.50 (5)			0.50(5)
150pF(151)	0.50(5)				0.50 (5)			0.50(5)
180pF(181)	0.50(5)				0.50 (5)			0.50(5)
220pF(221)	0.50 (5)					0.50(5)		
270pF(271)	0.50 (5)					0.50(5)		
330pF(331)	0.50(5)					0.50(5)		
390pF(391)	0.50(5)					0.50(5)		
470pF(471)	0.50(5)							
560pF(561)	0.50(5)							
680pF(681)	0.50(5)							
820pF(821)	0.50(5)							
1000pF(102)	0.50(5)							

The part numbering code is shown in ().

Temperature Compensating Type GRM18 Series (1.60x0.80mm) 200/100/50/25V

Part Number						GRM18					
L x W [EIA]					1.0	60x0.80 [06	03]				
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)		T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance p	art numberi	ng code) an	id T (mm) D	imension (T	Dimension p	art numberi	ng code)			
0.50pF(R50)	0.80(8)	0.80(8)	0.80(8)								
0.75pF(R75)	0.80(8)	0.80(8)	0.80(8)								
1.0pF(1R0)	0.80(8)	0.80(8)	0.80(8)								
2.0pF(2R0)	0.80(8)	0.80(8)	0.80(8)								
3.0pF(3R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
4.0pF(4R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
5.0pF(5R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
6.0pF(6R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
7.0pF(7R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
8.0pF(8R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
9.0pF(9R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
10pF(100)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
12pF(120)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
15pF(150)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
18pF(180)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
22pF(220)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
27pF(270)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
33pF(330)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
39pF(390)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
47pF(470)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
56pF(560)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.00(0)	0.80(8)	0.80(8)
68pF(680)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)	0.80(8)
82pF(820)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)	0.80(8)
100pF(101)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.00(0)	0.80(8)	0.80(8)	0.80(8)
120pF(121)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)	0.80(8)	0.80(8)
150pF(151)		0.80(8) 0.80(8)	0.80(8) 0.80(8)	0.80(8)	0.80(8) 0.80(8)	0.80(8) 0.80(8)		0.80(8) 0.80(8)	0.80(8) 0.80(8)	0.80(8)	0.80(8) 0.80(8)
220pF(221)		0.80(8)	0.80(8)		0.80(6)	0.80(8)		0.80(8)	0.80(8)	0.80(8) 0.80(8)	0.80(8)
270pF(271)		0.80(8)	0.80(8)			0.00(0)		0.80(8)	0.80(8)	0.80(8)	0.80(8)
330pF(331)		0.80(8)	0.80(8)					0.80(8)	0.80(8)	0.80(8)	0.80(8)
390pF(391)		0.80(8)	0.80(8)					0.80(8)	0.80(8)	0.80(8)	0.80(8)
470pF(471)		0.80(8)	0.80(8)					0.00(0)	0.80(8)	0.80(8)	0.80(8)
560pF(561)		0.80(8)	0.80(8)						0.80(8)	0.00(0)	0.80(8)
680pF(681)		0.80(8)	0.80(8)						0.80(8)		0.80(8)
820pF(821)		0.80(8)	0.80(8)						3.55(0)	+	3.33(3)
1000pF(102)		0.80(8)	0.80(8)						0.80(8)		0.80(8)
1200pF(122)		2.00(0)	0.80(8)						0.80(8)		0.80(8)
1500pF(152)			0.80(8)						0.80(8)		0.80(8)
1800pF(182)			0.80(8)						0.80(8)		0.80(8)
2200pF(222)			0.80(8)						0.80(8)		0.80(8)
2700pF(272)			0.80(8)						0.80(8)		0.80(8)
3300pF(332)			(-/						0.80(8)		0.80(8)
3900pF(392)									0.80(8)		0.80(8)
4700pF(472)									0.80(8)		0.80(8)
5600pF(562)									0.80(8)		0.80(8)
6800pF(682)									0.80(8)		0.80(8)
8200pF(822)									0.80(8)		0.80(8)
10000pF(103)									0.80(8)		0.80(8)

The part numbering code is shown in ().

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. 05.12.14

Temperature Compensating Type GRM21 Series (2.00x1.25mm) 200/100/50/25V

Part Number		-				GRM21					
L x W [EIA]					2.	00x1.25 [08	05]			1	1
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)		T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1 H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1 H)
Capacitance (Ca	pacitance p	art numberi	ng code) an	nd T (mm) Di	mension (T	Dimension p	oart numberi	ng code)		,	
12pF(120)	0.85(9)	0.85(9)									
15pF(150)	0.85(9)	0.85(9)									
18pF(180)	0.85(9)	0.85(9)									
22pF(220)	0.85(9)	0.85(9)									
27pF(270)	0.85(9)	0.85(9)									
33pF(330)	0.85(9)	0.85(9)									
39pF(390)	0.85(9)	0.85(9)									
47pF(470)	0.85(9)	0.85(9)									
56pF(560)	0.85(9)	0.85(9)									
68pF(680)	1.25(B)										
82pF(820)	1.25(B)										
100pF(101)	1.25(B)										
120pF(121)	1.25(B)						0.85(9)				
150pF(151)	1.25(B)						1.25(B)				
180pF(181)	1.25(B)			0.85(9)			1.25(B)				
220pF(221)	1.25(B)			0.85(9)	0.85(9)		1.25(B)				
270pF(271)				0.85(9)	0.85(9)	0.85(9)	1.25(B)				
330pF(331)				0.85(9)	0.85(9)	0.85(9)	1.25(B)				
390pF(391)				1.25(B)	0.85(9)	0.85(9)	1.25(B)				
470pF(471)				1.25(B)	0.85(9)	0.85(9)	1.25(B)	0.85(9)			
560pF(561)				1.25(B)	1.25(B)	1.25(B)	. ,	0.85(9)		1.25(B)	
680pF(681)		0.85(9)		. ,	1.25(B)	1.25(B)		0.85(9)		1.25(B)	
820pF(821)		0.85(9)			, ,	1.25(B)		1.25(B)	0.60(6)	1.25(B)	0.60(6)
1000pF(102)		0.85(9)						1.25(B)	0.60(6)	1.25(B)	0.60(6)
1200pF(122)		0.85(9)	0.60(6)					1.25(B)	0.60(6)	1.25(B)	0.60(6)
1500pF(152)		0.85(9)	0.60(6)					1.25(B)	0.85(9)	1.25(B)	0.85(9)
1800pF(182)		3.22(0)	0.60(6)					1.25(B)	0.85(9)	1.25(B)	0.85(9)
2200pF(222)			0.60(6)						0.85(9)	1.27(2)	0.85(9)
2700pF(272)			0.60(6)						1.25(B)		1.25(B)
3300pF(332)			0.60(6)						1.25(B)		1.25(B)
3900pF(392)			0.60(6)						5(=)		
4700pF(472)			0.60(6)								
5600pF(562)			0.85(9)								
6800pF(682)			0.85(9)								
8200pF(822)			0.85(9)								
10000pF(103)			0.85(9)						0.60(6)		0.60(6)
12000pF (123)			0.85(9)						0.60(6)		0.60(6)
15000pF(153)			0.85(9)						0.60(6)		0.60(6)
18000pF (183)			1.25(B)						0.60(6)		0.60(6)
22000pF(183)			1.25(B)						0.85(9)		0.85(9)
27000pF(223)			1.23(D)						0.85(9)		0.85(9)
33000pF(273)									1.00(A)		1.00(A)
									<u> </u>		
39000pF(393) 47000pF(473)									1.25(B) 1.25(B)		1.25(B) 1.25(B)

The part numbering code is shown in ().

Temperature Compensating Type GRM31 Series (3.20x1.60mm) 500/200/100/50/25V

Part Number							GR	M31						
L x W [EIA]							3.20x1.6	0 [1206]			-			
тс			C0G (5C)			C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)		T2H (6T)	U2J (7U)
Rated Volt.	500 (2H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitanc	e part nur	nbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberir	g code)				
1.0pF(1R0)	1.15(M)													
2.0pF(2R0)	1.15(M)													
3.0pF(3R0)	1.15(M)													
4.0pF(4R0)	1.15(M)													
5.0pF(5R0)	1.15(M)													
6.0pF(6R0)	1.15(M)													
7.0pF(7R0)	1.15(M)													
8.0pF(8R0)	1.15(M)													
9.0pF(9R0)	1.15(M)													
10pF(100)	1.15(M)													
12pF(120)	1.15(M)													
15pF(150)	1.15(M)													
18pF(180)	1.15(M)													
22pF(220)	1.15(M)													
27pF(270)	1.15(M)													
33pF(330)	1.15(M)													
39pF(390)	1.15(M)													
47pF(470)	1.15(M)													
56pF(560)	1.15(M)													
68pF(680)	1.15(M)													
82pF(820)	1.15(M)	1 1 5 (8.4)												
270pF(271)		1.15(M)												
330pF(331)		1.15(M)												
390pF(391)		1.15(M)									0.05(0)			
470pF(471)		1.15(M)								1 15/84)	0.85(9)			
560pF(561)							0.05(0)			1.15(M)	0.85(9)			
680pF(681) 820pF(821)			0.85(9)				0.85(9) 0.85(9)	0.85(9)		1.15(M) 1.15(M)	0.85(9) 0.85(9)			
1000pF(102)			0.85(9)				1.15(M)	1.15(M)	0.85(9)	1.15(M)	0.85(9)			
1200pF(102)			0.85(9)				1.15(M)	1.15(M)	1.15(M)	1.15(M)	0.85(9)			
1500pF (152)			0.85(9)				1.15(M)	1.15(M)	1.15(M)	1.13(141)	0.85(9)			
1800pF(132)			0.85(9)				1.13(141)	1.13(141)	1.15(M)		0.85(9)			
2200pF(222)			0.85(9)						1.13(11)		1.15(M)		1.15(M)	
2700pF(272)			0.85(9)								1.15(M)		1.15(M)	
3300pF(332)			0.85(9)	0.85(9)							1.15(M)		1.15(M)	
3900pF(392)			0.85(9)	0.85(9)							1.15(M)	0.85(9)	1.15(M)	0.85(9)
4700pF(472)			0.85(9)	0.85(9)							1.15(M)	0.85(9)		0.85(9)
5600pF(562)			0.85(9)	0.85(9)							- ()	0.85(9)		0.85(9)
6800pF(682)			(-/	0.85(9)	0.85(9)	0.85(9)						1.15(M)		1.15(M
8200pF(822)				0.85(9)	1.15(M)	1.15(M)						1.15(M)		1.15(M
10000pF(103)				0.85(9)	0.85(9)	. ,						, ,		
12000pF(123)				0.85(9)	, ,									
15000pF(153)				0.85(9)										
18000pF(183)				0.85(9)										
22000pF(223)				0.85(9)										
27000pF(273)				0.85(9)										
33000pF(333)				0.85(9)										
39000pF(393)				1.15(M)										
47000pF(473)				1.15(M)										

Continued from the preceding page.

Part Number							GR	M31						
L x W [EIA]							3.20x1.6	0 [1206]						
тс			C0G (5C)			C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)		T2H (6T)	U2J (7U)
Rated Volt.	500 (2H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	e part nui	mbering o	code) and	T (mm) D	imension	(T Dimen	sion part	numberir	ig code)	'	'		
56000pF(563)				1.60(C)								0.85(9)		0.85(9)
68000pF(683)				1.60(C)								1.15(M)		1.15(M)
82000pF(823)				1.60(C)								1.15(M)		1.15(M)
0.10μF(104)					1.60(C)							1.15(M)		1.15(M)

The part numbering code is shown in ().

High Dielectric Constant Type X5R (R6) Characteristics

тс						5R (6)				
Part Number	GRI	M15		GRM18		GR	M21		GRM31	
L x W [EIA]	1.00x0.5	50 [0402]	1.	60x0.80 [060)3]	2.00x1.2	25 [0805]	3.	20x1.60 [120	06]
Rated Volt.	16 (1C)	10 (1A)	25 (1E)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	pacitance pa	rt numbering	code) and T	(mm) Dimens	sion (T Dimen	sion part nun	nbering code)			
68000pF(683)		0.50(5)								
0.10μF(104)	0.50(5)	0.50(5)								
0.22μF(224)			0.80(8)							
0.33μF(334)				0.80(8)		0.60(6)				
0.47μF(474)				0.80(8)						
0.68μF(684)				0.80(8)						
1.0μF(105)				0.80(8)	0.80(8)	0.85(9)			0.85(9)	
1.5μF(155)							0.85(9)			
2.2μF(225)						1.25(B)	1.25(B)		0.85(9)	
3.3μF(335)							1.25(B)		1.30(X)	
4.7μF(475)							1.25(B)	1.60(C)	1.60(C)	1.15(M)
10μF(106)									1.60(C)	1.60(C)

The part numbering code is shown in each ().

High Dielectric Constant Type X7R (R7) Characteristics

тс										X7 (R	7R 7)									
Part Number		GRI	M15			(GRM18	3				GR	M21				(GRM31	1	
L x W [EIA]	1.	00x0.5	040)2]	1.60x0.80 [0603]					2.	00x1.2	25 [080)5]			3.20	(1.60 [1206]		
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacita	nce pa	rt num	bering	code)	and T	(mm) [Dimens	ion (T	Dimen	sion pa	art nun	nbering	code)				•		
220pF (221)	0.50 (5)				0.80 (8)	0.80 (8)														
330pF (331)	0.50 (5)				0.80 (8)	0.80 (8)														
470pF (471)	0.50 (5)				0.80 (8)	0.80 (8)														
680pF (681)	0.50 (5)				0.80 (8)	0.80 (8)														

Dimensions are shown in mm and Rated Voltage in Vdc.

 $^{3.3\}mu F$ and $4.7\mu F$, 6.3V rated are GRM21 series of L: 2 ± 0.15 , W: 1.25 ± 0.15 , T: 1.25 ± 0.15 .

T: 1.15±0.1mm is also available for GRM31 1.0 μF for 16V.

L: 3.2±0.2, W: 1.6±0.2 for GRM31 16V 1.0µF type. Also L: 3.2±0.2, W: 1.6±0.2, T: 1.15±0.15 for GRM31 16V 1.5µF and 2.2µF type.

Dimensions are shown in mm and Rated Voltage in Vdc.

Continued from the preceding page.

тс										X (R	7R 2 7)									
Part Number			M15				GRM18						M21					GRM3		
L x W [EIA]	1.	00x0.5	040)2]		1.60	(0.80 [0603]			2.	00x1.2	25 [080)5]			3.20x	(1.60 [1206]	1
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca		nce pa	rt num	bering		l .	(mm) [Dimens	ion (T	Dimen	sion pa	art nun	nbering	g code)					I	
1000pF (102)	0.50 (5)				0.80 (8)	0.80 (8)														
1500pF (152)	0.50 (5)				0.80 (8)	0.80 (8)														
2200pF (222)	0.50 (5)				0.80 (8)	0.80 (8)														
3300pF (332)	0.50 (5)				0.80 (8)	0.80 (8)														
4700pF (472)	0.50 (5)					0.80 (8)				0.85 (9)										
6800pF (682)		0.50 (5)				0.80 (8)				0.85 (9)										
10000pF (103)		0.50 (5)				0.80 (8)				1.25 (B)										
15000pF (153)		0.50 (5)	0.50 (5)			0.80				1.25 (B)										
22000pF (223)		0.50 (5)	0.50 (5)			0.80 (8)				1.25 (B)										
33000pF (333)		0.50 (5)	0.50 (5)	0.50 (5)		0.80	0.80			1.25 (B)	0.85 (9)					1.15 (M)				
47000pF (473)		0.50 (5)		0.50 (5)		0.80 (8)	0.80			1.25 (B)	1.25 (B)					1.15 (M)				
68000pF (683)			0.50 (5)			0.80	0.80				1.25 (B)					1.15 (M)				
0.10μF (104)			0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)	0.80 (8)			1.25 (B)	1.25 (B)								
0.15μF (154)							0.80 (8)	0.80 (8)	0.80 (8)		1.25 (B)	1.25 (B)								
0.22μF (224)							0.80 (8)	0.80 (8)	0.80 (8)		1.25 (B)	0.85 (9)								
0.33μF (334)								0.80			0.85 (9)	1.25 (B)		0.60 (6)			0.85 (9)			
0.47μF (474)								0.80 (8)			1.25 (B)	0.85 (9)	0.85 (9)				1.15 (M)		0.85 (9)	
0.68μF (684)													0.85 (9)					0.85 (9)		
1.0μF (105)												1.25 (B)	1.25 (B)				1.15 (M)	1.15 (M)	0.85 (9)	0.85 (9)
1.5μF (155)												1.25 (B)					1.60 (C)		1.15 (M)	
2.2μF (225)														1.25 (B)	1.25 (B)		1.60 (C)	1.15 (M)	1.15 (M)	1.15 (M)
3.3μF (335)																		1.60 (C)	1.60 (C)	
4.7μF (475)																		1.60 (C)	1.60 (C)	1.60 (C)
10μF (106)																				1.60 (C)

The part numbering code is shown in each ().

The tolerance will be changed to L: 3.2 ± 0.2 , W: 1.6 ± 0.2 for GRM31 16V $1.0\mu F$ type. Also L: 3.2 ± 0.2 , W: 1.6 ± 0.2 , T: 1.15 ± 0.15 for GRM31 16V $1.5\mu F$ and $2.2\mu F$ type. Dimensions are shown in mm and Rated Voltage in Vdc.

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

High Dielectric Constant Type Y5V (F5) Characteristics

тс		'								5V 5)								
Part Number		GR	M15				GRM18	3			GR	M21				GRM31		
L x W [EIA]	1	.00x0.5	040	2]		1.60	x0.80 [0	0603]		2	.00x1.2	25 [080	5]		3.20	x1.60 [1	[206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	pacitar	nce par	t numbe	ering co	de) and	mm) T b) Dime	nsion (T	Dimen	sion pa	rt numb	ering c	ode)					
2200pF (222)	0.50 (5)																	
4700pF (472)	0.50 (5)				0.80 (8)													
10000pF (103)	0.50 (5)					0.80 (8)												
22000pF (223)		0.50 (5)				0.80 (8)												
47000pF (473)		0.50 (5)	0.50 (5)			0.80 (8)												
0.10μF (104)		0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.85 (9)								
0.22μF (224)			0.50 (5)			0.80 (8)		0.80 (8)		1.25 (B)	0.85 (9)							
0.47μF (474)			0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)	0.80 (8)	0.85 (9)	1.25 (B)			1.15 (M)				
1.0μF (105)								0.80 (8)	0.80 (8)	0.85 (9)	0.85 (9)	0.85 (9)	0.85 (9)		1.15 (M)	0.85 (9)		
2.2µF (225)											1.25 (B)	1.25 (B)	1.25 (B)			1.15 (M)	0.85 (9)	
4.7μF (475)													1.25 (B)	1.60 (C)	1.15 (M)	1.15 (M)	1.15 (M)	
10μF (106)															1.60 (C)		1.15 (M)	1.15 (M)

The part numbering code is shown in each ().

T: 1.25 ± 0.1 mm is also available for GRM21 25V or 16V $1.0\mu F$ type.

Chip Monolithic Ceramic Capacitors

for Reflow Soldering GRM32/43/55 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. The GRM series is a complete line of chip ceramic capacitors in 10V, 16V, 25V, 50V, 100V and 200V ratings. These capacitors have temperature characteristics ranging from C0G to Y5V.
- 3. This series consists of type LxWxT: 3.2x2.5x0.85mm to LxWxT: 5.7x5.0x2.5mm. These are suited to only reflow soldering.

Part Number		Dime	nsions (mm	1)		
Part Nulliber	L	W	T	e min.	g min.	
GRM329			0.85 ±0.1			-
GRM32M			1.15 ±0.1			S
GRM32N	3.2 ± 0.3	2.5 ±0.2	1.35 ±0.15	0.3	1.0	2 2 2 2
GRM32R			1.8 ±0.2			2020
GRM32E			2.5 ±0.2			
GRM43M			1.15 ±0.1			
GRM43N			1.35 ±0.15			
GRM43R	4.5 ± 0.4	3.2 ±0.3	1.8 ±0.2	0.3	2.0	
GRM43D			2.0 ±0.2			e g e
GRM43E			2.5 ±0.2			
GRM55M			1.15 ±0.1			
GRM55N			1.35 ±0.15			
GRM55C	5.7 +0.4	5.0 ±0.4	1.6 ±0.2	0.3	2.0	
GRM55R	5.7 IU.4	5.0 <u>±</u> 0.4	1.8 ±0.2	0.3	2.0	
GRM55D			2.0 ±0.2			la W
GRM55E			2.5 ±0.2			L VV

■ Applications

General electronic equipment

Temperature Compensating Type GRM32/43/55 Series

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32N5C2D561JV01	COG (EIA)	200	560 ±5%	3.20	2.50	1.35
GRM32N5C2D681JY21	COG (EIA)	200	680 ±5%	3.20	2.50	1.35
GRM32N5C2D821JY21	COG (EIA)	200	820 ±5%	3.20	2.50	1.35
GRM32N5C2D102JY21	C0G (EIA)	200	1000 ±5%	3.20	2.50	1.35
GRM43R5C2D122JV01	C0G (EIA)	200	1200 ±5%	4.50	3.20	1.80
GRM43R5C2D152JV01	COG (EIA)	200	1500 ±5%	4.50	3.20	1.80
GRM43R5C2D182JY21	COG (EIA)	200	1800 ±5%	4.50	3.20	1.80
GRM43R5C2D222JY21	C0G (EIA)	200	2200 ±5%	4.50	3.20	1.80
GRM43R5C2D272JY21	C0G (EIA)	200	2700 ±5%	4.50	3.20	1.80
GRM55N5C2D332JY21	COG (EIA)	200	3300 ±5%	5.70	5.00	1.35
GRM55R5C2D392JY21	C0G (EIA)	200	3900 ±5%	5.70	5.00	1.80
GRM55R5C2D472JY21	COG (EIA)	200	4700 ±5%	5.70	5.00	1.80
GRM55R5C2D562JY21	C0G (EIA)	200	5600 ±5%	5.70	5.00	1.80
GRM32N1X2D152JV01	SL (JIS)	200	1500 ±5%	3.20	2.50	1.35
GRM43N1X2D182JV01	SL (JIS)	200	1800 ±5%	4.50	3.20	1.35
GRM43N1X2D222JV01	SL (JIS)	200	2200 ±5%	4.50	3.20	1.35
GRM43R1X2D272JV01	SL (JIS)	200	2700 ±5%	4.50	3.20	1.80
GRM43R1X2D332JV01	SL (JIS)	200	3300 ±5%	4.50	3.20	1.80
GRM43R1X2D392JV01	SL (JIS)	200	3900 ±5%	4.50	3.20	1.80
GRM55N1X2D472JV01	SL (JIS)	200	4700 ±5%	5.70	5.00	1.35
GRM55R1X2D562JV01	SL (JIS)	200	5600 ±5%	5.70	5.00	1.80
GRM55R1X2D682JV01	SL (JIS)	200	6800 ±5%	5.70	5.00	1.80
GRM55R1X2D822JV01	SL (JIS)	200	8200 ±5%	5.70	5.00	1.80
GRM32N1X2A562JZ01	SL (JIS)	100	5600 ±5%	3.20	2.50	1.35
GRM32N1X2A682JZ01	SL (JIS)	100	6800 ±5%	3.20	2.50	1.35
GRM43N1X2A822JZ01	SL (JIS)	100	8200 ±5%	4.50	3.20	1.35
GRM43R1X2A103JZ01	SL (JIS)	100	10000 ±5%	4.50	3.20	1.80
GRM43R1X2A123JZ01	SL (JIS)	100	12000 ±5%	4.50	3.20	1.80
GRM43R1X2A153JZ01	SL (JIS)	100	15000 ±5%	4.50	3.20	1.80
GRM55M1X2A183JZ01	SL (JIS)	100	18000 ±5%	5.70	5.00	1.15
GRM55N1X2A223JZ01	SL (JIS)	100	22000 ±5%	5.70	5.00	1.35
GRM55R1X2A273JZ01	SL (JIS)	100	27000 ±5%	5.70	5.00	1.80
GRM55R1X2A333JZ01	SL (JIS)	100	33000 ±5%	5.70	5.00	1.80
GRM55R1X2A393JZ01	SL (JIS)	100	39000 ±5%	5.70	5.00	1.80

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14 Continued from the preceding page.

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32N1X1H103JZ01	SL (JIS)	50	10000 ±5%	3.20	2.50	1.35
GRM32N1X1H123JZ01	SL (JIS)	50	12000 ±5%	3.20	2.50	1.35
GRM43R1X1H153JZ01	SL (JIS)	50	15000 ±5%	4.50	3.20	1.80
GRM55M1X1H183JZ01	SL (JIS)	50	18000 ±5%	5.70	5.00	1.15
GRM55N1X1H223JZ01	SL (JIS)	50	22000 ±5%	5.70	5.00	1.35
GRM55R1X1H273JZ01	SL (JIS)	50	27000 ±5%	5.70	5.00	1.80
GRM55R1X1H333JZ01	SL (JIS)	50	33000 ±5%	5.70	5.00	1.80
GRM55R1X1H393JZ01	SL (JIS)	50	39000 +5%	5.70	5.00	1.80

High Dielectric Constant Type Type GRM32 Series (3.20x2.50mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32ER61A106KA01	X5R (EIA)	10	10μF ±10%	3.20	2.50	2.50
GRM32NR72A683KA01	X7R (EIA)	100	68000pF ±10%	3.20	2.50	1.35
GRM32NR72A104KA01	X7R (EIA)	100	0.10μF ±10%	3.20	2.50	1.35
GRM32CR72A684KA01	X7R (EIA)	100	0.68μF ±10%	3.20	2.50	1.60
GRM32CR72A105KA35	X7R (EIA)	100	1.0μF ±10%	3.20	2.50	1.60
GRM32ER72A105KA01	X7R (EIA)	100	1.0μF ±10%	3.20	2.50	2.50
GRM32DR72A155KA35	X7R (EIA)	100	1.5μF ±10%	3.20	2.50	2.00
GRM32ER72A225KA35	X7R (EIA)	100	2.2μF ±10%	3.20	2.50	2.50
GRM32NR71H684KA01	X7R (EIA)	50	0.68μF ±10%	3.20	2.50	1.35
GRM32DR71H335KA88	X7R (EIA)	50	3.3μF ±10%	3.20	2.50	2.00
GRM32ER71H475KA88	X7R (EIA)	50	4.7μF ±10%	3.20	2.50	2.50
GRM32NR71E155KA01	X7R (EIA)	25	1.5μF ±10%	3.20	2.50	1.35
GRM32RR71E225KA01	X7R (EIA)	25	2.2μF ±10%	3.20	2.50	1.80
GRM32DR71E335KA01	X7R (EIA)	25	3.3μF ±10%	3.20	2.50	2.00
GRM32DR71E475KA61	X7R (EIA)	25	4.7μF ±10%	3.20	2.50	2.00
GRM32MR71C225KA01	X7R (EIA)	16	2.2μF ±10%	3.20	2.50	1.15
GRM32NR71C335KA01	X7R (EIA)	16	3.3μF ±10%	3.20	2.50	1.35
GRM32RR71C475KA01	X7R (EIA)	16	4.7μF ±10%	3.20	2.50	1.80
GRM32DR71C106KA01	X7R (EIA)	16	10μF ±10%	3.20	2.50	2.00
GRM32NF52A104ZA01	Y5V (EIA)	100	0.10μF +80/-20%	3.20	2.50	1.35
GRM32RF51H105ZA01	Y5V (EIA)	50	1.0μF +80/-20%	3.20	2.50	1.80
GRM32DF51H106ZA01	Y5V (EIA)	50	10μF +80/-20%	3.20	2.50	2.00
GRM329F51E475ZA01	Y5V (EIA)	25	4.7μF +80/-20%	3.20	2.50	0.85
GRM32NF51E106ZA01	Y5V (EIA)	25	10μF +80/-20%	3.20	2.50	1.35
GRM32NF51C106ZA01	Y5V (EIA)	16	10μF +80/-20%	3.20	2.50	1.35

High Dielectric Constant Type Type GRM43 Series (4.50x3.20mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM43RR72A154KA01	X7R (EIA)	100	0.15 ±10%	4.50	3.20	1.80
GRM43RR72A224KA01	X7R (EIA)	100	0.22 ±10%	4.50	3.20	1.80
GRM43DR72A474KA01	X7R (EIA)	100	0.47 ±10%	4.50	3.20	2.00
GRM43DR72A155KA01	X7R (EIA)	100	1.5 ±10%	4.50	3.20	2.00
GRM43ER72A225KA01	X7R (EIA)	100	2.2 ±10%	4.50	3.20	2.50
GRM43DR71H155KA01	X7R (EIA)	50	1.5 ±10%	4.50	3.20	2.00
GRM43ER71H225KA01	X7R (EIA)	50	2.2 ±10%	4.50	3.20	2.50
GRM43ER71E475KA01	X7R (EIA)	25	4.7 ±10%	4.50	3.20	2.50
GRM43RF52A224ZD01	Y5V (EIA)	100	0.22 +80/-20%	4.50	3.20	1.80

High Dielectric Constant Type Type GRM55 Series (5.70x5.00mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM55DR61H106KA88	X5R (EIA)	50	10 ±10%	5.70	5.00	2.00
GRM55DR72A105KA01	X7R (EIA)	100	1.0 ±10%	5.70	5.00	2.00
GRM55ER72A475KA01	X7R (EIA)	100	4.7 ±10%	5.70	5.00	2.50
GRM55RR71H105KA01	X7R (EIA)	50	1.0 ±10%	5.70	5.00	1.80
GRM55RR71H155KA01	X7R (EIA)	50	1.5 ±10%	5.70	5.00	1.80
GRM55ER11H475KA01	X7R (EIA)	50	4.7 ±10%	5.70	5.00	2.50
GRM55ER71H475KA01	X7R (EIA)	50	4.7 ±10%	5.70	5.00	2.50
GRM55RF52A474ZA01	Y5V (EIA)	100	0.47 +80/-20%	5.70	5.00	1.80

Chip Monolithic Ceramic Capacitors

Ultra-small GRM02/03 Series

■ Features

- 1. Small chip size (LxWxT: 0.4x0.2x0.2, 0.6x0.3x0.3
- 2. Terminations are made of metal highly resistant to migration.
- 3. GRM02, GRM03 series is suited to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 5. GRM02, GRM03 series are suited to miniature micro wave module, portable equipment and high frequency circuits.

	Part Number	Dimensions (mm)									
		L	W	T	е	g min.					
	GRM022	0.4 ±0.02	0.2 ±0.02	0.2 ±0.02	0.07 to 0.14	0.13					
	GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2					

■ Applications

- 1. Miniature micro wave module
- 2. Portable equipment
- 3. High frequency circuit

Part Number	GRM02			GRM03 0.6x0.3 [0201]											
LxW	0.4x0.2 [01005]						0.6x0.3	3 [0201]							
тс	C0G (5C)	C0G (5C)	R2H (6R)	S2H (6S)	T2H (6T)		2J 'U)	X5R (R6)			7R R7)		Y5V (F5)		
Rated Volt.	16 (1C)	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	10 (1A)		
Capacitance (Ca	apacitance	part num	bering cod	de) and T (mm) Dime	ension (T D	imension	part numb	ering code	e)	'		<u>'</u>		
0.30pF(R30)		0.3(3)													
0.40pF(R40)		0.3(3)													
0.50pF(R50)		0.3(3)													
0.60pF(R60)		0.3(3)													
0.70pF(R70)		0.3(3)													
0.75pF(R75)		0.3(3)													
0.80pF(R80)		0.3(3)													
0.90pF(R90)		0.3(3)													
1.0pF(1R0)	0.2(2)	0.3(3)													
1.1pF(1R1)		0.3(3)													
1.2pF(1R2)		0.3(3)													
1.3pF(1R3)		0.3(3)													
1.4pF(1R4)		0.3(3)													
1.5pF(1R5)		0.3(3)													
1.6pF(1R6)		0.3(3)													
1.7pF(1R7)		0.3(3)													
1.8pF(1R8)		0.3(3)													
1.9pF(1R9)		0.3(3)													
2.0pF(2R0)	0.2(2)	0.3(3)													
2.1pF(2R1)		0.3(3)													
2.2pF(2R2)		0.3(3)													
2.3pF(2R3)		0.3(3)													
2.4pF(2R4)		0.3(3)													
2.5pF(2R5)		0.3(3)													
2.6pF(2R6)		0.3(3)													
2.7pF(2R7)		0.3(3)													

r	ä	7	٩	
	ı	,	J	
Ľ	3	5	d	

Continued from		ng page.											
Part Number	GRM02							M03					
LxW	0.4x0.2 [01005]					1		3 [0201]		X7R			
тс	C0G (5C)	C0G (5C)	R2H (6R)	S2H (6S)	T2H (6T)	(7	2J 'U)	X5R (R6)		(F	7R R7)		Y5V (F5)
Rated Volt.	16 (1C)	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	10 (1A)
Capacitance (Ca	apacitance	-	bering cod	de) and T	(mm) Dime	nsion (T D	imension	part numb	ering code	e)			1
2.8pF(2R8)		0.3 (3)											
2.9pF(2R9)		0.3 (3)											
3.0pF(3R0)	0.2(2)	0.3 (3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
3.1pF(3R1)		0.3(3)											
3.2pF(3R2)		0.3(3)											
3.3pF(3R3)		0.3(3)											
3.4pF(3R4)		0.3(3)											
3.5pF(3R5)		0.3(3)											
3.6pF(3R6)		0.3(3)											
3.7pF(3R7)		0.3(3)											
3.8pF(3R8)		0.3(3)											
3.9pF(3R9)		0.3(3)											
4.0pF(4R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
4.1pF(4R1)		0.3(3)											
4.2pF(4R2)		0.3(3)											
4.3pF(4R3)		0.3(3)											
4.4pF(4R4)		0.3(3)											
4.5pF(4R5)		0.3(3)											
4.6pF(4R6)		0.3(3)											
4.7pF(4R7)		0.3(3)											
4.8pF(4R8)		0.3(3)											
4.9pF(4R9)		0.3(3)											
5.0pF(5R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
5.1pF(5R1)		0.3(3)											
5.2pF(5R2)		0.3(3)											
5.3pF(5R3)		0.3(3)											
5.4pF(5R4)		0.3(3)											
5.5pF(5R5)		0.3(3)											
5.6pF(5R6)		0.3(3)											
5.7pF(5R7)		0.3(3)											
5.8pF(5R8)		0.3(3)											
5.9pF(5R9)	0.0(2)	0.3(3)	0.0(0)	0.0(2)	0.0(2)	0.0(0)							
6.0pF(6R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
6.1pF(6R1)		0.3(3)	-										
6.2pF(6R2)		0.3(3)											
6.3pF(6R3)		0.3(3)							-				
6.4pF(6R4)		0.3(3)	-						-				
6.5pF(6R5) 6.6pF(6R6)		0.3(3)											
6.6pF(6R6)		0.3(3) 0.3(3)											
6.8pF(6R8)		0.3(3)											
6.8pF(6R9)		0.3(3)											
7.0pF(7R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
7.0pF(7R0) 7.1pF(7R1)	U.Z(Z)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
7.1pF(7R1) 7.2pF(7R2)		0.3(3)											
7.2pF(7R2) 7.3pF(7R3)		0.3(3)											
7.3pF(7R3) 7.4pF(7R4)		0.3(3)											
7.4pr(7R4) 7.5pF(7R5)		0.3(3)											
7.5pF(7R5) 7.6pF(7R6)		0.3(3)											
7.6pF(7R6) 7.7pF(7R7)		0.3(3)											
7.7pF(7R7) 7.8pF(7R8)		0.3(3)											
7.6pF(7R9)		0.3(3)											
1.3με(/ κ3)		U.3(3)											

Part Number	GRM02						GRI						
LxW	0.4x0.2 [01005]			1	1		0.6x0.3	[0201]	ı	VZD			
тс	C0G (5C)	C0G (5C)	R2H (6R)	S2H (6S)	T2H (6T)	U (7	2J 'U)	X5R (R6)		X` (F	7R R7)		Y5V (F5)
Rated Volt.	16 (1C)	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	10 (1A)
Capacitance (Ca	apacitance	part num	bering cod	de) and T ((mm) Dime	nsion (T D	imension	part numb	ering code	e)			
8.0pF(8R0)	0.2(2)	0.3(3)											
8.1pF(8R1)		0.3(3)											
8.2pF(8R2)		0.3(3)											
8.3pF(8R3)		0.3(3)											
8.4pF(8R4)		0.3(3)											
8.5pF(8R5)		0.3(3)											
8.6pF(8R6)		0.3(3)											
8.7pF(8R7)		0.3(3)											
8.8pF(8R8)		0.3(3)											
8.9pF(8R9)		0.3(3)											
9.0pF(9R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
9.1pF(9R1)		0.3(3)											
9.2pF(9R2)		0.3(3)											
9.3pF(9R3)		0.3(3)											
9.4pF(9R4)		0.3(3)											
9.5pF(9R5)		0.3(3)											
9.6pF(9R6)		0.3(3)											
9.7pF(9R7)		0.3(3)											
9.8pF(9R8)		0.3(3)											
9.9pF(9R9)		0.3(3)											
10pF(100)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
12pF(120)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
15pF(150)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
18pF(180)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
22pF(220)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
27pF(270)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
33pF(330)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
39pF(390)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
47pF(470)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
56pF(560)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
68pF(680)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
82pF(820)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
100pF(101)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)		0.3(3)	0.3(3)			
150pF(151)			'	.,	.,				0.3(3)	0.3(3)			
220pF(221)									0.3(3)	0.3(3)			
330pF(331)									0.3(3)	0.3(3)			
470pF(471)									0.3(3)	0.3(3)			
680pF(681)									0.3(3)	0.3(3)			
1000pF(102)									0.3(3)	0.3(3)			
1500pF(152)		1						0.3(3)	0.3(3)			0.3(3)	
2200pF(222)								0.3(3)	= (=/	0.3(3)	0.3(3)	0.3(3)	0.3(
3300pF(332)								0.3(3)		0.3(3)	0.3(3)	0.3(3)	3.5(
4700pF(472)								0.3(3)		1.5(0)	0.3(3)	0.3(3)	0.3(
6800pF(682)								0.3(3)			0.3(3)	0.3(3)	5.0(
10000pF(103)								0.3(3)			0.3(3)	0.3(3)	0.3(

The part numbering code is shown in $\ (\).$

Chip Monolithic Ceramic Capacitors

Tight Tolerance GRM03/15 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. A wide selection of sizes is available, from the miniature LxWxT: 0.6x0.3x0.3mm or LxWxT: 1.0x0.5x0.5mm.
- 3. The GRM03 type is a complete line of chip ceramic capacitors in 25V ratings, The GRM15 type is a complete line of chip ceramic capacitors in 50V ratings.
- 4. These capacitors have temperature characteristics ranging C0G.
- 5. GRM03 and GRM15 type are applied to only reflow soldering.
- 6. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 7. The GRM series is available in paper tape and reel packaging for automatic placement.

Part Number	Dimensions (mm)										
Part Number	L	L W T		е	g min.						
GRM033	0.6±0.03	0.3±0.03	0.3±0.03	0.1 to 0.2	0.2						
GRM155	1.0±0.05	0.5±0.05	0.5±0.05	0.15 to 0.3	0.4						

■ Applications

General electronic equipment

Temperature Compensating Type GRM03/15 Series

Part Number		GRM03	GRM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
TC COG (5C) Rated Volt. 25 (1E)			C0G (5C)
			50 (1H)
Capacitance, Ca	pacitano	e Tolerance and T Dimension	
0.10pF(R10)	M, N	0.30(3)	0.50(5)
0.20pF(R20)	K, M	0.30(3)	0.50 (5)
0.30pF(R30)	K, M	0.30 (3)	0.50 (5)
0.40pF(R40)	K, M	0.30(3)	0.50 (5)
0.50pF(R50)	K, M	0.30(3)	0.50 (5)
0.60pF(R60)	K, M	0.30(3)	0.50 (5)
0.70pF(R70)	K, M	0.30(3)	0.50 (5)
0.80pF(R80)	K, M	0.30(3)	0.50(5)
0.90pF(R90)	K, M	0.30(3)	0.50(5)
1.0pF(1R0)	J, K	0.30(3)	0.50(5)
1.1pF(1R1)	J, K	0.30(3)	0.50(5)
1.2pF(1R2)	J, K	0.30 (3)	0.50 (5)
1.3pF(1R3)	J, K	0.30 (3)	0.50 (5)
1.4pF(1R4)	J, K	0.30(3)	0.50(5)
1.5pF(1R5)	J, K	0.30(3)	0.50(5)
1.6pF(1R6)	J, K	0.30(3)	0.50(5)
1.7pF(1R7)	J, K	0.30(3)	0.50(5)
1.8pF(1R8)	J, K	0.30(3)	0.50(5)
1.9pF(1R9)	J, K	0.30(3)	0.50 (5)

The part numbering code is shown in ().

Continued from the preceding page.

Part Number		GRM03	GRM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension	
2.0pF(2R0)	G, J	0.30(3)	0.50 (5)
2.1pF(2R1)	G, J	0.30(3)	0.50 (5)
2.2pF(2R2)	G, J	0.30(3)	0.50 (5)
2.3pF(2R3)	G, J	0.30(3)	0.50 (5)
2.4pF(2R4)	G, J	0.30(3)	0.50 (5)
2.5pF(2R5)	G, J	0.30(3)	0.50 (5)
2.6pF(2R6)	G, J	0.30(3)	0.50 (5)
2.7pF(2R7)	G, J	0.30(3)	0.50 (5)
2.8pF(2R8)	G, J	0.30(3)	0.50 (5)
2.9pF(2R9)	G, J	0.30(3)	0.50 (5)
3.0pF(3R0)	G, J	0.30(3)	0.50(5)
3.1pF(3R1)	G, J	0.30(3)	0.50 (5)
3.2pF(3R2)	G, J	0.30(3)	0.50(5)
3.3pF(3R3)	G, J	0.30(3)	0.50 (5)
3.4pF(3R4)	G, J	0.30(3)	0.50 (5)
3.5pF(3R5)	G, J	0.30(3)	0.50 (5)
3.6pF(3R6)	G, J	0.30(3)	0.50(5)
3.7pF(3R7)	G, J	0.30(3)	0.50 (5)
3.8pF(3R8)	G, J	0.30(3)	0.50(5)
3.9pF(3R9)	G, J	0.30(3)	0.50(5)
4.0pF(4R0) 4.1pF(4R1)	G, J	0.30(3) 0.30(3)	0.50(5) 0.50(5)
4.1pF(4R1) 4.2pF(4R2)	G, J G, J	0.30(3)	0.50(5)
4.2pF(4R2) 4.3pF(4R3)	G, J	0.30(3)	0.50(5)
4.4pF(4R4)	G, J	0.30(3)	0.50(5)
4.5pF(4R5)	G, J	0.30(3)	0.50(5)
4.6pF(4R6)	G, J	0.30(3)	0.50(5)
4.7pF(4R7)	G, J	0.30(3)	0.50(5)
4.8pF(4R8)	G, J	0.30(3)	0.50(5)
4.9pF(4R9)	G, J	0.30(3)	0.50(5)
5.0pF(5R0)	F, G	0.30(3)	0.50(5)
5.1pF(5R1)	F, G	0.30(3)	0.50(5)
5.2pF(5R2)	F, G	0.30(3)	0.50(5)
5.3pF(5R3)	F, G	0.30(3)	0.50(5)
5.4pF(5R4)	F, G	0.30(3)	0.50(5)
5.5pF(5R5)	F, G	0.30(3)	0.50(5)
5.6pF(5R6)	F, G	0.30(3)	0.50 (5)
5.7pF(5R7)	F, G	0.30(3)	0.50(5)
5.8pF(5R8)	F, G	0.30(3)	0.50 (5)
5.9pF(5R9)	F, G	0.30(3)	0.50 (5)
6.0pF(6R0)	F, G	0.30(3)	0.50 (5)
6.1pF(6R1)	F, G	0.30(3)	0.50 (5)
6.2pF(6R2)	F, G	0.30(3)	0.50(5)
6.3pF(6R3)	F, G	0.30(3)	0.50 (5)
6.4pF(6R4)	F, G	0.30(3)	0.50 (5)
6.5pF(6R5)	F, G	0.30(3)	0.50 (5)
6.6pF(6R6)	F, G	0.30(3)	0.50 (5)
6.7pF(6R7)	F, G	0.30(3)	0.50 (5)
6.8pF(6R8)	F, G	0.30(3)	0.50 (5)
6.9pF(6R9)	F, G	0.30(3)	0.50(5)

The part numbering code is shown in $\ (\).$

Part Number		GRM03	GRM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension	
7.0pF(7R0)	F, G	0.30(3)	0.50 (5)
7.1pF(7R1)	F, G	0.30(3)	0.50 (5)
7.2pF(7R2)	F, G	0.30(3)	0.50 (5)
7.3pF(7R3)	F, G	0.30(3)	0.50 (5)
7.4pF(7R4)	F, G	0.30(3)	0.50 (5)
7.5pF(7R5)	F, G	0.30(3)	0.50 (5)
7.6pF(7R6)	F, G	0.30(3)	0.50(5)
7.7pF(7R7)	F, G	0.30(3)	0.50 (5)
7.8pF(7R8)	F, G	0.30(3)	0.50 (5)
7.9pF(7R9)	F, G	0.30(3)	0.50 (5)
8.0pF(8R0)	F, G	0.30(3)	0.50(5)
8.1pF(8R1)	F, G	0.30(3)	0.50 (5)
8.2pF(8R2)	F, G	0.30(3)	0.50 (5)
8.3pF(8R3)	F, G	0.30(3)	0.50 (5)
8.4pF(8R4)	F, G	0.30(3)	0.50 (5)
8.5pF(8R5)	F, G	0.30(3)	0.50 (5)
8.6pF(8R6)	F, G	0.30(3)	0.50 (5)
8.7pF(8R7)	F, G	0.30(3)	0.50 (5)
8.8pF(8R8)	F, G	0.30(3)	0.50 (5)
8.9pF(8R9)	F, G	0.30(3)	0.50 (5)
9.0pF(9R0)	F, G	0.30(3)	0.50 (5)
9.1pF(9R1)	F, G	0.30(3)	0.50 (5)
9.2pF(9R2)	F, G	0.30(3)	0.50 (5)
9.3pF(9R3)	F, G	0.30(3)	0.50(5)
9.4pF(9R4)	F, G	0.30(3)	0.50(5)
9.5pF(9R5)	F, G	0.30(3)	0.50(5)
9.6pF(9R6)	F, G	0.30(3)	0.50(5)
9.7pF(9R7)	F, G	0.30(3)	0.50(5)
9.8pF(9R8)	F, G	0.30(3)	0.50(5)
9.9pF(9R9)	F, G	0.30(3)	0.50(5)

The part numbering code is shown in ().

Chip Monolithic Ceramic Capacitors

Thin Type (Flow/Reflow)

■ Features

- 1. This series is suited to flow and reflow soldering. Capacitor terminations are made of metal highly resistant to migration.
- 2. Large capacitance values enable excellent bypass effects to be realized.
- 3. Its thin package makes this series ideally suited for the production of small electronic products and for mounting underneath ICs.

■ Applications

Thin equipment such as IC cards

Part Number		Dimensions (mm)					
Part Number	L	W	Т	е	g min.		
GRM15X	1.0 ±0.05	0.5 ±0.05	0.25 ±0.05	0.1 to 0.3	0.4		

Temperature Compensating Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM15X5C1H1R0CDB4	COG (EIA)	50	1.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H2R0CDB4	C0G (EIA)	50	2.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H3R0CDB4	C0G (EIA)	50	3.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H4R0CDB4	C0G (EIA)	50	4.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H5R0CDB4	C0G (EIA)	50	5.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H6R0DDB4	C0G (EIA)	50	6.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H7R0DDB4	C0G (EIA)	50	7.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H8R0DDB4	C0G (EIA)	50	8.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H9R0DDB4	C0G (EIA)	50	9.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H100JDB4	C0G (EIA)	50	10 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H120JDB4	C0G (EIA)	50	12 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H150JDB4	C0G (EIA)	50	15 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H180JDB4	C0G (EIA)	50	18 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H220JDB4	C0G (EIA)	50	22 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H270JDB4	C0G (EIA)	50	27 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H330JDB4	C0G (EIA)	50	33 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H390JDB4	C0G (EIA)	50	39 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H470JDB4	C0G (EIA)	50	47 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H560JDB4	C0G (EIA)	50	56 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H680JDB4	C0G (EIA)	50	68 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H820JDB4	C0G (EIA)	50	82 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H101JDB4	C0G (EIA)	50	100 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E121JDB4	C0G (EIA)	25	120 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E151JDB4	C0G (EIA)	25	150 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E181JDB4	C0G (EIA)	25	180 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E221JDB4	C0G (EIA)	25	220 ±5%	1.00	0.50	0.25	0402

High Dielectric Constant Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM15XR71H221KA86	X7R (EIA)	50	220 ±10%	1.00	0.50	0.25	0402
GRM15XR71H331KA86	X7R (EIA)	50	330 ±10%	1.00	0.50	0.25	0402
GRM15XR71H471KA86	X7R (EIA)	50	470 ±10%	1.00	0.50	0.25	0402
GRM15XR71H681KA86	X7R (EIA)	50	680 ±10%	1.00	0.50	0.25	0402
GRM15XR71H102KA86	X7R (EIA)	50	1000 ±10%	1.00	0.50	0.25	0402
GRM15XR71H152KA86	X7R (EIA)	50	1500 ±10%	1.00	0.50	0.25	0402
GRM15XR71E222KA86	X7R (EIA)	25	2200 ±10%	1.00	0.50	0.25	0402
GRM15XR71C332KA86	X7R (EIA)	16	3300 ±10%	1.00	0.50	0.25	0402
GRM15XR71C472KA86	X7R (EIA)	16	4700 ±10%	1.00	0.50	0.25	0402
GRM15XR71C682KA86	X7R (EIA)	16	6800 ±10%	1.00	0.50	0.25	0402
GRM15XR61A223KA86	X5R (EIA)	10	22000 ±10%	1.00	0.50	0.25	0402
GRM15XR61A333KA86	X5R (EIA)	10	33000 ±10%	1.00	0.50	0.25	0402

		Specifi	ications			
No	o. Item	Temperature Compensating Type	High Dielectric Type	Test Method		
1	Operating Temperature Range	-55 to +125℃	B1, B3, F1, R6 : −25 to +85°C R1, R7 : −55 to +125°C E4 : +10 to +85°C F5 : −30 to +85°C	Reference temperature : 25°C (2Δ, 3Δ, 4Δ, B1, B3, F1, R1, R6 : 20°C)		
2	Rated Voltage	See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{O,p} , whichever is larger, should be maintained within the rated voltage range.		
3	Appearance	No defects or abnormalities		Visual inspection		
4	Dimensions	Within the specified dimensions	3	Using calipers		
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when *300% of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V		
6	Insulation Resistance	C≦0.047μF : More than 10,000 C>0.047μF : 500Ω · F	MΩ C : Nominal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25℃ and 75%RH max. and within 2 minutes of charging, provided the charge/ discharge current is less than 50mA.		
7	Capacitance	Within the specified tolerance		The capacitance/Q/D.F. should be measured at 20/25°C at the		
8	Q/ Dissipation Factor (D.F.)	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Char.		

Continued from the preceding page.

	Continued from the preceding page. Specifications		cations							
No.	lte	em	Temperature Compensating Type	High Dielectric Type	-		Test Me	ethod		
		No bias Within the specified tolerance (Table A-1) B1, B3 : Within ±10% (−55 to +85℃) R6 : Within ±15% (−55 to +85℃) E4 : Within +22/−56% (+10 to +85℃) F1 : Within +30/−80% (−25 to +85℃) F5 : Within ±22/−82% (−30 to +85℃) C8 : Within ±22% (−55 to +105℃)		R1, R7 : Within ±15% (-55 to +125°C) R6 : Within ±15% (-55 to +85°C) E4 : Within +22/-56% (+10 to +85°C) F1 : Within +30/-80% (-25 to +85°C) F5 : Within +22/-82% (-30 to +85°C) C8 : Within ±22%	each speci (1)Temper The tempe capacitanc When cycli 5 (5C: +2! : +25 to +4! the specific capacitanc The capaci between th	fied tem ature Co rature co e measu- ing the te 5 to +12 85°C/+20 ed tolera- ee chang- itance dr ne maxim and 5 by t	p. stage. Impensating T pefficient is de ured in step 3 a emperature se 5°C/ΔC: +20 to 0 to +85°C) the nce for the ter e as Table A-1 rift is calculate num and minin	ype termined as a refer quentially to +125°C e capacita nperature I. d by divid	ence. If from step 1 through If other temp. coeffs. Ince should be within It coefficient and Ing the differences Sured values in the	
						•			perature ±2	
		50% of		B1 : Within +10/-30%		2			±3 (for other TC)	
		the Rated		R1 : Within +15/-40%		3	Refere	ence Tem	perature ±2	
		Voltage		F1 : Within +30/-95%		4	125±3 (fo	r ∆C)/85±	3 (for other TC)	
		rature				5	Refere	ence Tem	perature ±2	
9	Capacitance Temperature Characteristics		erature		(2) High Dielectric Constant Type The ranges of capacitance change compared wit value over the temperature ranges shown in the be within the specified ranges.* In case of applying voltage, the capacitance charmeasured after 1 more min. with applying voltage equilibration of each temp. stage. Step Temperature (°C) Apply		in the table should be change should be			
			' (whichever is larner)		1		ence Tempere	<i>'</i>	Applying voltage (v)	
		Capacitance Drift		*Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.	234	-55: -25: -30±3 Refere	±3 (for R1, R7 ±3 (for B1, B3 (for F5)/10±3 ence Temperer 5±3 (for R1, F ±3 (for B1, B3	7, R6) 5, F1) (for E4) ture ±2	No bias	
					7	00_	F1, F5, E4)	· I		
					5	Refere	erence Tempereture ±2			
					6		-55±3 (for R1)/			
									50% of the rated	
							Reference Tempereture ±2		voltage	
					8		125±3 (for R1) 5±3 (for B1, F			
		No removal of the terminations		No removal of the terminations or other defect should occur.		Fig. 1a usii parallel wit The solder reflow metl soldering is	ng an eu h the tes ing shou hod and s uniform	itectic solder. It jig for 10±1: Ild be done eit should be con	Then app sec. her with a aducted w efects su	poxy board) shown in ly 10N* force in an iron or using the ith care so that the ch as heat shock. GRM18)
				(4 Y/4 					(in mm)	
10	Adhesive	-			Ty GRM02		0.2	0.56	0.23	
	of Termin	ation			GRI002		0.2	0.30	0.23	
				Solder resist	GR□15		0.4	1.5	0.5	
				Baked electrode or	GRM18	3	1.0	3.0	1.2	
				copper foil	GRM21		1.2	4.0	1.65	
			Fig. 1a		GRM31		2.2	5.0	2.0	
					GRM32		2.2 3.5	5.0 7.0	2.9 3.7	
					GRM43 GRM55		4.5	8.0	5.6	
					3111100			0.0		

Continued from the preceding page.

١				cations		T	thod	
No.	Ite	em	Temperature Compensating Type	High Dielectric Type		Test Me	ethod	
		Appearance	No defects or abnormalities					
		Capacitance	Within the specified tolerance					
11	Vibration Resistance	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic mo having a total amplitude of 1.5mm, the frequency being variuniformly between the approximate limits of 10 and 55Hz. T frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should applied for a period of 2 hours in each 3 mutually perpendic directions (total of 6 hours). Solder the capacitor on the test jig (glass epoxy board) show			harmonic motion cy being varied and 55Hz. The 10Hz, should otion should be lly perpendicular
			No crack or marked defect shou	ıld occur.	in Fig. 2a using ar	-		
					direction shown in	Fig. 3a for 5±1	sec. The sol	dering should be
					done either with a be conducted with	•		
					of defects such as		e soluening is	dillionii and nee
12	2 Deflection) Pressurizing speed : 1.0mm/sec. Pressurize		100 Fig. 2	04.5 04.5	03/15 : t · 0 8mm)
				Flexure : ≦1	Type	a	b	C
				I lexule . 21	GRM02	0.2	0.56	0.23
			Capacitance n	neter	GR□03	0.3	0.9	0.3
			45	45	GR□15	0.4	1.5	0.5
					GRM18	1.0	3.0	1.2
			Fig. 3a		GRM21	1.2	4.0	1.65
					GRM31 GRM32	2.2	5.0 5.0	2.0
					GRM43	3.5	7.0	3.7
					GRM55	4.5	8.0	5.6
								(in mm)
13	Solderab Terminati		75% of the terminations are to be continuously.	e soldered evenly and	Immerse the caparosin (JIS-K-5902) Preheat at 80 to 1 After preheating, i 2±0.5 seconds at for 2±0.5 seconds) (25% rosin in v 20℃ for 10 to 3 immerse in an e 230±5℃ or Sn	weight proport 0 seconds. utectic solder	solution for
			The measured and observed ch specifications in the following ta	•				
		Appearance	No defects or abnormalities		-			
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4 : Within ±20%	Preheat the capaci	acitor in an eute	ctic solder or	Sn-3.0Ag-0.5Cu
				[B1, B3, R1, R6, R7, E4, C8]	solder solution at 270±5°C for 10±0.5 seconds. Set at retemperature for 24±2 hours, then measure. •Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hoursthen set at room temperature for 24±2 hours. Perform the initial measurement. •Preheating for GRM32/43/55 Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.		. Set at room	
14	Resistance to Soldering Heat	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V	Perform a heat tre then set at room to Perform the initial • Preheating for G Step 1	eatment at 1504 emperature for measurement. RM32/43/55 Temperatur 100 to 120%	e	Time 1 min.
14	to Soldering		30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Perform a heat tre then set at room to Perform the initial • Preheating for G Step 1	eatment at 1504 emperature for measurement. RM32/43/55 Temperatur 100 to 120%	e	Time 1 min.
14	to Soldering	Q/D.F. I.R. Dielectric	30pF and below : Q≥400+20C	W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Perform a heat tre then set at room to Perform the initial • Preheating for G Step 1	eatment at 1504 emperature for measurement. RM32/43/55 Temperatur 100 to 120%	e	Time 1 min.

Continued from the preceding page.

		Specifi	cations					
lo. Ite	em	Temperature Compensating Type	High Dielectric Type		Test	Method	l	
		The measured and observed ch specifications in the following ta	•					
	Appearance	No defects or abnormalities						
	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4 : Within ±20%	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatm		atments		
			[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max.	shown in the fo	ours at room te	•		ıre.
			W.V.: 16/10V: 0.035 max.	Step	1	2	3	4
Temperature Cycle	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C	W.V. : 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF)	Temp. (°C)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.
	C : Nominal Capacitance (pF)	[F1, F5]	Time (min.)	30±3	2 to 3	30±3	2 to 3	
		C : Nominal Capacitance (pF)	W.V. : 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V. : 16/10V : 0.125 max. W.V. : 6.3V : 0.15 max.	•Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement.				
	I.R.	More than 10,000M Ω or 500 Ω -	F (Whichever is smaller)					
	Dielectric Strength	No defects						
		The measured and observed ch specifications in the following ta	-					
	Appearance	No defects or abnormalities						
	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5 : Within ±30%					
Humidity (Steady State)	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.05 max. W.V.: 16/10V: 0.05 max. W.V.: 6.3/4V : 0.075 max. (C≤3.3μF) : 0.125 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.075 max. (C<0.1μF) : 0.125 max. (C≥0.1μF) W.V.: 16/10V: 0.15 max. W.V.: 6.3V: 0.2 max.	Set the capacit 500±12 hours. Remove and s measure.				

Continued from the preceding page.

			Specif	ications	
No.	lt∈	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed chapecifications in the following ta	•	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10V max.] F1, F5: Within +30/-40%	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room
17	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.05 max. W.V.: 16/10V: 0.05 max. W.V.: 6.3V : 0.075 max. (C<3.3μF) : 0.125 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.075 max. (C<0.1μF) : 0.125 max. (C≥0.1μF) W.V.: 16/10V: 0.15 max. W.V.: 6.3V: 0.2 max.	temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 24±2 hours at room temperature. Perform initial measurement.
		I.R.	More than $500 \mathrm{M}\Omega$ or $25\Omega \cdot \mathrm{F}$ (V	Vhichever is smaller)	
			The measured and observed chapecifications in the following ta	•	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [Except 10V max. and. C≥1.0µF] F1, F5: Within +30/-40% [10V max. and C≥1.0µF]	Apply *200% of the rated voltage at the maximum operating temperature ±3°c for 1000±12 hours. Set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
18	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.05 max. W.V.: 16/10V: 0.05 max. W.V.: 6.3V	•Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximum operating temperature ±3℃ for one hour. Remove and set for 24±2 hours at room temperature. Perform initial measurement. *150% for 500V
		I.R.	More than $1,000M\Omega$ or $50\Omega \cdot F$	(Whichever is smaller)	

Chip Monolithic Ceramic Capacitors

Large Capacitance Type

■ Features

- 1. Smaller size and higher capacitance value
- 2. High reliability and no polarity
- 3. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency
- 4. Ta replacement

Applications

General electronic equipment

Part Number		Dime	nsions (mr	n)	
rait ivuilibei	L	W	T	e min.	g min.
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.2	0.2 to 0.5	0.5
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5
GRM216	2.0 ±0.1		0.6 ±0.1		
GRM219		1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7
GRM21B			1.25 ±0.1		
GRM316			0.6 ±0.1		1.5
GRM319	3.2 ±0.15		0.85 ±0.1	0.3 to 0.8	
GRM31M			1.15 ±0.1		
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		
GRM32C			1.6 ±0.2		
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 ±0.2	0.3	1.0
GRM32E			2.5 ±0.2		
GRM43D			2.0 ±0.2		
GRM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0
GRM43S			2.8 ±0.2		
GRM55F	5.7 +0.4	5.0 +0.4	3.2 ±0.2	0.3	2.0

High Dielectric Constant Type X5R (R6) Characteristics

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188R61E474KA12	X5R (EIA)	25	0.47μF ±10%	1.60	0.80	0.80
GRM188R61E105KA12	X5R (EIA)	25	1.0μF ±10%	1.60	0.80	0.80
GRM21BR61E105KA99	X5R (EIA)	25	1.0μF ±10%	2.00	1.25	1.25
GRM219R61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.00	1.25	0.85
GRM21BR61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.00	1.25	1.25
GRM21BR61E335KA12	X5R (EIA)	25	3.3μF ±10%	2.00	1.25	1.25
GRM21BR61E475KA12	X5R (EIA)	25	4.7μF ±10%	2.00	1.25	1.25
GRM319R61E475KA12	X5R (EIA)	25	4.7μF ±10%	3.20	1.60	0.85
GRM31CR61E106KA12	X5R (EIA)	25	10μF ±10%	3.20	1.60	1.60
GRM32ER61E226KE15	X5R (EIA)	25	22μF ±10%	3.20	2.50	2.50
GRM188R61C474KA93	X5R (EIA)	16	0.47μF ±10%	1.60	0.80	0.80
GRM185R61C105KE44	X5R (EIA)	16	1.0μF ±10%	1.60	0.80	0.50
GRM188R61C105KA93	X5R (EIA)	16	1.0μF ±10%	1.60	0.80	0.80
GRM216R61C105KA88	X5R (EIA)	16	1.0μF ±10%	2.00	1.25	0.60
GRM188R61C225KE15	X5R (EIA)	16	2.2μF ±10%	1.60	0.80	0.80
GRM219R61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	0.85
GRM21BR61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	1.25
GRM316R61C225KA88	X5R (EIA)	16	2.2μF ±10%	3.20	1.60	0.60
GRM21BR61C335KA88	X5R (EIA)	16	3.3μF ±10%	2.00	1.25	1.25
GRM21BR61C475KA88	X5R (EIA)	16	4.7μF ±10%	2.00	1.25	1.25
GRM319R61C475KA88	X5R (EIA)	16	4.7μF ±10%	3.20	1.60	0.85
GRM32ER61C226KE20	X5R (EIA)	16	22μF ±10%	3.20	2.50	2.50
GRM43ER61C226KE01	X5R (EIA)	16	22μF ±10%	4.50	3.20	2.50
GRM32ER61C476KE15	X5R (EIA)	16	47μF ±10%	3.20	2.50	2.50
GRM155R61A154KE19	X5R (EIA)	10	0.15μF ±10%	1.00	0.50	0.50
GRM155R61A224KE19	X5R (EIA)	10	0.22μF ±10%	1.00	0.50	0.50
GRM185R61A105KE36	X5R (EIA)	10	1.0μF ±10%	1.60	0.80	0.50
GRM188R61A225KE34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM188R61A225ME34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM216R61A225KE24	X5R (EIA)	10	2.2μF ±10%	2.00	1.25	0.60
GRM219R61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.00	1.25	0.85
GRM316R61A225KA01	X5R (EIA)	10	2.2μF ±10%	3.20	1.60	0.60
GRM219R61A335KE19	X5R (EIA)	10	3.3μF ±10%	2.00	1.25	0.85
GRM21BR61A335KA73	X5R (EIA)	10	3.3μF ±10%	2.00	1.25	1.25
GRM316R61A335KE19	X5R (EIA)	10	3.3μF ±10%	3.20	1.60	0.60
GRM219R61A475KE34	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	0.85

Continued from the preceding page.

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM21BR61A475KA73	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	1.25
GRM316R61A475KE19	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.60
GRM319R61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.85
GRM21BR61A106KE19	X5R (EIA)	10	10μF ±10%	2.00	1.25	1.25
GRM21BR61A106ME19	X5R (EIA)	10	10μF ±20%	2.00	1.25	1.25
GRM319R61A106KA19	X5R (EIA)	10	10μF ±10%	3.20	1.60	0.85
GRM31MR61A106KE19	X5R (EIA)	10	10μF ±10%	3.20	1.60	1.15
GRM32NR61A226KE19	X5R (EIA)	10	22μF ±10%	3.20	2.50	1.35
GRM32ER61A476KE20	X5R (EIA)	10	47μF ±10%	3.20	2.50	2.50
GRM43ER61A476KE19	X5R (EIA)	10	47μF ±10%	4.50	3.20	2.50
GRM033R60J153KE01	X5R (EIA)	6.3	15000pF ±10%	0.60	0.30	0.30
GRM033R60J223KE01	X5R (EIA)	6.3	22000pF ±10%	0.60	0.30	0.30
GRM033R60J333KE01	X5R (EIA)	6.3	33000pF ±10%	0.60	0.30	0.30
GRM033R60J393KE19	X5R (EIA)	6.3	39000pF ±10%	0.60	0.30	0.30
GRM033R60J473KE19	X5R (EIA)	6.3	47000pF ±10%	0.60	0.30	0.30
GRM033R60J683KE19	X5R (EIA)	6.3	68000pF ±10%	0.60	0.30	0.30
GRM033R60J104KE19	X5R (EIA)	6.3	0.10μF ±10%	0.60	0.30	0.30
GRM155R60J154KE01	X5R (EIA)	6.3	0.15μF ±10%	1.00	0.50	0.50
GRM155R60J224KE01	X5R (EIA)	6.3	0.22μF ±10%	1.00	0.50	0.50
GRM155R60J334KE01	X5R (EIA)	6.3	0.33μF ±10%	1.00	0.50	0.50
GRM155R60J474KE19	X5R (EIA)	6.3	0.47μF ±10%	1.00	0.50	0.50
GRM155R60J105KE19	X5R (EIA)	6.3	1.0μF ±10%	1.00	0.50	0.50
GRM185R60J105KE21	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J105KE26	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J225KE26	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.50
GRM188R60J225KE01	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J225KE19	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	1.60	0.80	0.80
GRM219R60J475KE01	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J475KE32	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	0.85
GRM219R60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	0.85
GRM21BR60J106KE01	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106ME01	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM21BR60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM319R60J106KE01	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	0.85
GRM319R60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	0.85
GRM31MR60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	1.15
GRM31CR60J156KE19	X5R (EIA)	6.3	15μF ±10%	3.20	1.60	1.60
GRM21BR60J226ME39	X5R (EIA)	6.3	22μF ±20%	2.00	1.25	1.25
GRM31CR60J226KE19	X5R (EIA)	6.3	22μF ±10%	3.20	1.60	1.60
GRM31CR60J226ME19	X5R (EIA)	6.3	22μF ±20%	3.20	1.60	1.60
GRM32DR60J226KA01	X5R (EIA)	6.3	22μF ±10%	3.20	2.50	2.00
GRM32DR60J336ME19	X5R (EIA)	6.3	33μF ±10%	3.20	2.50	2.00
GRM43DR60J336KE01	X5R (EIA)	6.3	33μF ±10%	4.50	3.20	2.00
GRM31CR60J476ME19	X5R (EIA)	6.3	47μF ±20%	3.20	1.60	1.60
GRM32ER60J476ME20	X5R (EIA)	6.3	47μF ±20%	3.20	2.50	2.50
GRM43ER60J476KE01	X5R (EIA)	6.3	47μF ±10%	4.50	3.20	2.50
GRM32ER60J107ME20	X5R (EIA)	6.3	100μF ±20%	3.20	2.50	2.50
GRM43SR60J107ME20	X5R (EIA)	6.3	100μF ±20%	4.50	3.20	2.80
GRM188R60G106ME47	X5R (EIA)	4	10μF ±20%	1.60	0.80	0.80

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. 05.12.14

High Dielectric Constant Type X6S/X7R/X7S (C8/R7/C7) Characteristics

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188C80G475KE19	X6S(EIA)	4	4.7 ±10%	1.60	0.80	0.80
GRM21BR71E225KA73	X7R (EIA)	25	2.2 ±10%	2.00	1.25	1.25
GRM55ER71E156KA01	X7R (EIA)	25	15 ±10%	5.70	5.00	2.50
GRM31CR71C106KAC7	X7R (EIA)	16	10 ±10%	3.20	1.60	1.60
GRM32ER71A226KE20	X7R (EIA)	10	22 ±10%	3.20	2.50	2.50
GRM32ER71A226ME20	X7R (EIA)	10	22 ±20%	3.20	2.50	2.50
GRM43ER71A226KE01	X7R (EIA)	10	22 ±10%	4.50	3.20	2.50
GRM21BC71A335KA73	X7S(EIA)	10	3.3 ±10%	2.00	1.25	1.25
GRM21BC71A475KA73	X7S(EIA)	10	4.7 ±10%	2.00	1.25	1.25

High Dielectric Constant Type Y5V (F5) Characteristics

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188F51A225ZE01	Y5V (EIA)	10	2.2 +80/-20%	1.60	0.80	0.80
GRM188F51A475ZE20	Y5V (EIA)	10	4.7 +80/-20%	1.60	0.80	0.80
GRM31CF51A226ZE01	Y5V (EIA)	10	22 +80/-20%	3.20	1.60	1.60
GRM32CF51A226ZA01	Y5V (EIA)	10	22 +80/-20%	3.20	2.50	1.60
GRM155F50J105ZE01	Y5V (EIA)	6.3	1.0 +80/-20%	1.00	0.50	0.50
GRM188F50J225ZE01	Y5V (EIA)	6.3	2.2 +80/-20%	1.60	0.80	0.80
GRM188F50J475ZE20	Y5V (EIA)	6.3	4.7 +80/-20%	1.60	0.80	0.80
GRM21BF50J106ZE01	Y5V (EIA)	6.3	10 +80/-20%	2.00	1.25	1.25
GRM31CF50J226ZE01	Y5V (EIA)	6.3	22 +80/-20%	3.20	1.60	1.60
GRM32EF50J107ZE20	Y5V (EIA)	6.3	100 +80/-20%	3.20	2.50	2.50

No.	Ite	em	Spec	cifications		Te	st Method	
1	Operating Tempera Range		B1, B3, F1 : −25 to +85°C R6 : −55 to +85°C F5 : −30 to +85°C C8 : −55 to +105°C, C7 : -55	to +125℃	Reference (B1, B3, F	temperature : 25 1 : 20℃)	C	
2	Rated Voltage		See the previous pages.		The rated voltage is defined as the maximum may be applied continuously to the capacitor. When AC voltage is superimposed on DC vowhichever is larger, should be maintained wit voltage range.		itor. voltage, V ^{p.p} or V ^{o.p} ,	
3	Appearar	nce	No defects or abnormalities		Visual ins	pection		
4	Dimensio	ns	Within the specified dimension	ons	Using cali	pers		
5	Dielectric	Strength	No defects or abnormalities		is applied	should be observed between the terminate charge/dischar	inations for 1 t	
6	Insulation Resistant		More than $50\Omega \cdot F$		not exceed 75%RH m		age at reference inutes of charg	3 0/1
7	Capacitance		G G G	Fable 1 RM155 B3/R6 1A 124 to 224 RM185 B3/R6 1A 105 RM188 B3/R6 1C/1A 225 RM219 B3/R6 1A 475 RM21B B3/R6 1C/1A 106	at the freq C≤10 C≤10 C>10 *1 Ho	uency and voltage capacitance OuF (10V min.)*1 OuF (6.3V max.)	e shown in the Frequency 1±0.1kHz 1±0.1kHz 120±24Hz is 0.5±0.1Vm	Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms
8	Dissipation Factor (D.F.)		G G G	Table 1 RM155 B3/R6 1A 124 to 224 RM185 B3/R6 1A 105 RM188 B3/R6 1C/1A 225 RM219 B3/R6 1A 475 RM21B B3/R6 1C/1A 106	C≦10μF (10V min.)*1 1±0.1kHz 1.0±0.2 C≦10μF (6.3V max.) 1±0.1kHz 0.5±0.1		Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms	
		No bias	B1, B3: Within ±10% (-25 to F1 : Within +30/-80% (-55 to F5 : Within ±22/-82% (-55 to C8 : Within ±22% (-55 to C8 : Withi	-25 to +85°C) o +85°C) -30 to +85°C) o +125°C)	each spec The range reference shown in t In case of measured equilibration	ified temp. stage. s of capacitance of temperature value he table should be	change compa e over the tem e within the sp the capacitan with applying stage.	perature ranges ecified ranges.* ce change should be voltage in
					Step	Temperatur	re (°C)	Applying Voltage (V)
9	Capacitance Temperature				2	Reference tem -55±3 (for R0 -25±3 (for B -30±3 (f	pereture ±2 6, C7, C8)/ 1, B3, F1)	
	Characteristics				3	Reference tem	· · · · · · · · · · · · · · · · · · ·	No bias
		50% of the Rated	B1: Within +10/-30%		4	85±3 (for B1, B3 125±3 (for 105±3 (for	or C7)/	
		Voltage	F1: Within +30/-95%		5	20±	2	
					6	-25±3 (for	B1, F1)	50% of the rated
					7	20±		voltage
					8	85±3 (for		-
					•Initial me Perform a then set fo	asurement for high	h dielectric co 150 +0/-10° oom temperat	C for one hour and

Continued from the preceding page.

No.	Ite	em	Specifications		Test Me	ethod	
	Adhesive Strength of Termination		No removal of the terminations or other defects should occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 1a using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N: GR□15/GRM18, 2N: GR□33			
10					a 0.3 0.4 1.0 1.2 2.2 2.2 3.5 4.5	b 0.9 1.5 3.0 4.0 5.0 5.0 7.0	0.3 0.5 1.2 1.65 2.0 2.9 3.7 5.6
		Appearance	No defects or abnormalities	Solder the capacito	or on the test iii	n (alass enovy	hoard) in the
		Capacitance	Within the specified tolerance	1			•
11	Vibration	D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmon having a total amplitude of 1.5mm, the frequency being uniformly between the approximate limits of 10 and 5 frequency range, from 10 to 55Hz and return to 10Hz be traversed in approximately 1 minute. This motion applied for a period of 2 hours in each 3 mutually perdirections (total of 6 hours).			narmonic motion by being varied and 55Hz. The 10Hz, should otion should be
12	12 Deflection		No cracking or marking defects should occur. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 Capacitance meter 45 Fig.3a	Fig. 2a Type		a force in the dering should be hod and should uniform and free t:1.6mm	
13	Solderability of Termination		75% of the terminations is to be soldered evenly and continuously.	(in m Immerse the capacitor in a solution of ethanol (JIS-K-8101) rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in an eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.			solution for

Continued from the preceding page.

No.	Ite	em	Specifications		Tes	st Method	d			
		Appearance Capacitance Change	No defects or abnormalities B1, B3, R6, C7, C8: Within ±7.5% F1, F5: Within ±20%	Immerse the o	Preheat the capacitor at 120 to 150°C for 1 minute Immerse the capacitor in an eutectic solder or Sn solder solution at 270±5°C for 10±0.5 seconds. S temperature for 24±2 hours, then measure.					
14	Resistance	Q/D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.		•Initial measurement for high dielectric constant type					
	to	I.R.	More than $50\Omega \cdot F$		Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours.					
	Soldering Heat	Dielectric			itial measurem	nent.				
		Strength	No defects	Step	Temp	erature	Ti	ime		
				1	100 to	o 120℃	1 1	min.		
				2	170 to	o 200℃	1 1	min.		
		Appearance	No defects or abnormalities	Fix the capaci	Fix the capacitor to the supporting jig in the sam					
		Capacitance Change	B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20%	Perform the fi	under the same conditions as (10). Perform the five cycles according to the four heat treatment			eatments		
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	Set for 24±2 I	shown in the following table. Set for 24±2 hours at room temperature, the					
	Temperature	I.R.	More than 50Ω · F	Step	1 Min	2	3 May	4		
15	Sudden Change			Temp. (℃)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.		
				Time (min.)	30±3	2 to 3	30±3	2 to 3		
		Dielectric Strength	No defects	Perform a heathen set at room	•Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement.					
		Appearance	No defects or abnormalities	Apply the rate	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. The charge/discharge current is less than 50n					
	High	Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%							
16	Temperature High	D.F.	B1, B3, R6, C7, C8 : 0.2 max. F1, F5 : 0.4 max.	Perform a heathen let sit for	 •Initial measurement Perform a heat treatment at 150+0/−10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. •Measurement after test Perform a heat treatment at 150+0/−10°C for one hour and then let sit for 24±2 hours at room temperature, then measurement. 					
	Humidity (Steady)	I.R.	More than 12.5 Ω · F	Measuremen Perform a hea						
		Appearance	No defects or abnormalities			•	000±12 hours			
		Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	room tempera	ture, then mea	sure.	C. Let sit for 24:	±2 hours at		
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.4 max.	•Initial measu	The charge/discharge current is less than 50mA. •Initial measurement					
17	Durability	I.R.	More than $25\Omega \cdot F$	then let sit for initial measure •Measuremen Perform a hea	Perform a heat treatment at 150+0/- then let sit for 24±2 hours at room to initial measurement. •Measurement after test Perform a heat treatment at 150+0/- then let sit for 24±2 hours at room to		mperature. Perf	form the		

High-Q GJM Series

■ Features

- 1. Mobile Telecommunication and RF module, mainly
- 2. Quality improvement of telephone call, Low power Consumption, yield ratio improvement

■ Applications

VCO, PA, Mobile Telecommunication

Part Number	Dimensions (mm)					
Part Number	L	W	T	е	g min.	
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	

Part Number	GJM03	GJM15
L x W [EIA]	0.60x0.30 [0201]	1.00x0.50 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
Capacitance (Capac	itance part numbering code) and T (mm) Dimension (T Dim	ension part numbering code)
0.30pF(R30)	0.30 (3)	0.50 (5)
0.40pF(R40)	0.30(3)	0.50 (5)
0.50pF(R50)	0.30(3)	0.50 (5)
0.60pF(R60)	0.30(3)	0.50 (5)
0.70pF(R70)	0.30(3)	0.50 (5)
0.75pF(R75)	0.30(3)	0.50 (5)
0.80pF(R80)	0.30(3)	0.50 (5)
0.90pF(R90)	0.30(3)	0.50 (5)
1.0pF(1R0)	0.30 (3)	0.50 (5)
1.1pF(1R1)	0.30 (3)	0.50 (5)
1.2pF(1R2)	0.30 (3)	0.50(5)
1.3pF(1R3)	0.30 (3)	0.50(5)
1.4pF(1R4)	0.30 (3)	0.50 (5)
1.5pF(1R5)	0.30 (3)	0.50 (5)
1.6pF(1R6)	0.30 (3)	0.50 (5)
1.7pF(1R7)	0.30 (3)	0.50 (5)
1.8pF(1R8)	0.30 (3)	0.50 (5)
1.9pF(1R9)	0.30 (3)	0.50 (5)
2.0pF(2R0)	0.30 (3)	0.50(5)
2.1pF(2R1)	0.30 (3)	0.50(5)
2.2pF(2R2)	0.30 (3)	0.50 (5)
2.3pF(2R3)	0.30 (3)	0.50 (5)
2.4pF(2R4)	0.30 (3)	0.50 (5)
2.5pF(2R5)	0.30 (3)	0.50 (5)
2.6pF(2R6)	0.30(3)	0.50 (5)
2.7pF(2R7)	0.30(3)	0.50 (5)
2.8pF(2R8)	0.30(3)	0.50 (5)
2.9pF(2R9)	0.30(3)	0.50 (5)
3.0pF(3R0)	0.30(3)	0.50 (5)
3.1pF(3R1)	0.30(3)	0.50 (5)
3.2pF(3R2)	0.30(3)	0.50 (5)
3.3pF(3R3)	0.30(3)	0.50 (5)
3.4pF(3R4)	0.30(3)	0.50 (5)

Continued from the preceding page.

Part Number	GJM03	GJM15
L x W [EIA]	0.60x0.30 [0201]	1.00x0.50 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
Capacitance (Capacitance	part numbering code) and T (mm) Dimension (T	Dimension part numbering code)
3.5pF(3R5)	0.30(3)	0.50 (5)
3.6pF(3R6)	0.30(3)	0.50 (5)
3.7pF(3R7)	0.30 (3)	0.50(5)
3.8pF(3R8)	0.30(3)	0.50 (5)
3.9pF(3R9)	0.30(3)	0.50 (5)
4.0pF(4R0)	0.30(3)	0.50(5)
4.1pF(4R1)	0.30(3)	0.50 (5)
4.2pF(4R2)	0.30 (3)	0.50 (5)
4.3pF(4R3)	0.30 (3)	0.50 (5)
4.4pF(4R4)	0.30 (3)	0.50 (5)
4.5pF(4R5)	0.30 (3)	0.50 (5)
4.6pF(4R6)	0.30 (3)	0.50 (5)
4.7pF(4R7)	0.30 (3)	0.50(5)
4.8pF(4R8)	0.30(3)	0.50 (5)
4.9pF(4R9)	0.30(3)	0.50 (5)
5.0pF(5R0)	0.30 (3)	0.50 (5)
5.1pF(5R1)	0.30 (3)	0.50 (5)
5.2pF(5R2)	0.30 (3)	0.50 (5)
5.3pF(5R3)	0.30(3)	0.50 (5)
5.4pF(5R4)	0.30 (3)	0.50 (5)
5.5pF(5R5)	0.30 (3)	0.50 (5)
5.6pF(5R6)	0.30(3)	0.50(5)
5.7pF(5R7)	0.30(3)	0.50(5)
5.8pF(5R8)	0.30(3)	0.50(5)
5.9pF(5R9)	0.30(3)	0.50(5)
6.0pF(6R0)	0.30(3)	0.50(5)
6.1pF(6R1)	0.30(3)	0.50(5)
6.2pF(6R2)	0.30(3)	0.50(5)
6.3pF(6R3)	0.30(3)	0.50(5)
6.4pF(6R4)	0.30(3)	0.50 (5)
6.5pF(6R5)	0.30(3)	0.50(5)
6.6pF(6R6) 6.7pF(6R7)	0.30(3) 0.30(3)	0.50(5) 0.50(5)
6.8pF(6R8)	0.30(3)	0.50(5)
6.9pF(6R9)	0.30(3)	0.50(5)
7.0pF(7R0)		0.50(5)
7.1pF(7R1)		0.50(5)
7.1pr (7R1) 7.2pF(7R2)		0.50(5)
7.3pF(7R3)		0.50(5)
7.4pF(7R4)		0.50(5)
7.5pF(7R5)		0.50(5)
7.6pF(7R6)		0.50(5)
7.7pF(7R7)		0.50(5)
7.8pF(7R8)		0.50(5)
7.9pF(7R9)		0.50(5)
8.0pF(8R0)		0.50(5)
8.1pF(8R1)		0.50(5)
8.2pF(8R2)		0.50(5)
8.3pF(8R3)		0.50(5)
8.4pF(8R4)		0.50(5)
8.5pF(8R5)		0.50(5)
8.6pF(8R6)		0.50(5)
8.6pF(8R6)		U.50(5)

Part Number	GJM03	GJM15
L x W [EIA]	0.60x0.30 [0201]	1.00x0.50 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
Capacitance (Capac	citance part numbering code) and T (mm) Dimension (T Dimen	sion part numbering code)
8.7pF(8R7)		0.50 (5)
8.8pF(8R8)		0.50 (5)
8.9pF(8R9)		0.50 (5)
9.0pF(9R0)		0.50(5)
9.1pF(9R1)		0.50(5)
9.2pF(9R2)		0.50(5)
9.3pF(9R3)		0.50(5)
9.4pF(9R4)		0.50 (5)
9.5pF(9R5)		0.50 (5)
9.6pF(9R6)		0.50(5)
9.7pF(9R7)		0.50(5)
9.8pF(9R8)		0.50(5)
9.9pF(9R9)		0.50(5)
10pF(100)		0.50(5)
12pF(120)		0.50 (5)
15pF(150)		0.50 (5)
18pF(180)		0.50 (5)
20pF(200)		0.50(5)

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

Chip Monolithic Ceramic Capacitors

Tight Tolerance High-Q GJM Series

■ Features

- 1. Mobile Telecommunication and RF module, mainly
- 2. Quality improvement of telephone call, Low power Consumption, yield ratio improvement

■ Applications

VCO, PA, Mobile Telecommunication

Part Number	Dimensions (mm)					
Part Number	L	W	T	е	g min.	
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	

Part Number		GJM03	GJM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension	
0.20pF(R20)	M, N	0.30(3)	0.50 (5)
0.30pF(R30)	K, M	0.30(3)	0.50 (5)
0.40pF(R40)	K, M	0.30(3)	0.50 (5)
0.50pF(R50)	K, M	0.30(3)	0.50 (5)
0.60pF(R60)	K, M	0.30(3)	0.50 (5)
0.70pF(R70)	K, M	0.30(3)	0.50 (5)
0.80pF(R80)	K, M	0.30(3)	0.50 (5)
0.90pF(R90)	K, M	0.30(3)	0.50 (5)
1.0pF(1R0)	K, M	0.30(3)	0.50 (5)
1.1pF(1R1)	K, M	0.30(3)	0.50 (5)
1.2pF(1R2)	K, M	0.30(3)	0.50 (5)
1.3pF(1R3)	K, M	0.30(3)	0.50 (5)
1.4pF(1R4)	K, M	0.30(3)	0.50 (5)
1.5pF(1R5)	K, M	0.30(3)	0.50 (5)
1.6pF(1R6)	K, M	0.30(3)	0.50 (5)
1.7pF(1R7)	K, M	0.30(3)	0.50 (5)
1.8pF(1R8)	K, M	0.30(3)	0.50 (5)
1.9pF(1R9)	K, M	0.30(3)	0.50 (5)
2.0pF(2R0)	G, J	0.30(3)	0.50 (5)
2.1pF(2R1)	G, J	0.30(3)	0.50 (5)
2.2pF(2R2)	G, J	0.30(3)	0.50 (5)
2.3pF(2R3)	G, J	0.30(3)	0.50 (5)
2.4pF(2R4)	G, J	0.30(3)	0.50 (5)
2.5pF(2R5)	G, J	0.30(3)	0.50 (5)
2.6pF(2R6)	G, J	0.30(3)	0.50 (5)
2.7pF(2R7)	G, J	0.30(3)	0.50 (5)
2.8pF(2R8)	G, J	0.30(3)	0.50 (5)
2.9pF(2R9)	G, J	0.30(3)	0.50 (5)
3.0pF(3R0)	G, J	0.30(3)	0.50 (5)
3.1pF(3R1)	G, J	0.30(3)	0.50 (5)
3.2pF(3R2)	G, J	0.30(3)	0.50 (5)
3.3pF(3R3)	G, J	0.30(3)	0.50 (5)
3.4pF(3R4)	G, J	0.30(3)	0.50 (5)

Part Number		GJM03	GJM15		
x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]		
CRated Volt.		C0G (5C)	COG (5C)		
		25	50		
		(1E)	(1H)		
-	1	e Tolerance and T Dimension	0.50/5)		
3.5pF(3R5)	G, J	0.30(3)	0.50 (5)		
3.6pF(3R6) 3.7pF(3R7)	G, J	0.30 (3) 0.30 (3)	0.50 (5) 0.50 (5)		
3.8pF(3R8)	G, J	0.30(3)	0.50 (5)		
3.9pF(3R9)	G, J	0.30(3)	0.50 (5)		
4.0pF(4R0)	G, J	0.30(3)	0.50(5)		
4.1pF(4R1)	G, J	0.30(3)	0.50(5)		
4.2pF(4R2)	G, J	0.30(3)	0.50(5)		
4.3pF(4R3)	G, J	0.30(3)	0.50(5)		
4.4pF(4R4)	G, J	0.30(3)	0.50(5)		
4.5pF(4R5)	G, J	0.30(3)	0.50 (5)		
4.6pF(4R6)	G, J	0.30(3)	0.50(5)		
4.7pF(4R7)	G, J	0.30(3)	0.50(5)		
4.8pF(4R8)	G, J	0.30(3)	0.50 (5)		
4.9pF(4R9)	G, J	0.30(3)	0.50 (5)		
5.0pF(5R0)	F, G	0.30(3)	0.50 (5)		
5.1pF(5R1)	F, G	0.30(3)	0.50 (5)		
5.2pF(5R2)	F, G	0.30 (3)	0.50 (5)		
5.3pF(5R3)	F, G	0.30(3)	0.50 (5)		
5.4pF(5R4)	F, G	0.30 (3)	0.50 (5)		
5.5pF(5R5)	F, G	0.30(3)	0.50 (5)		
5.6pF(5R6)	F, G	0.30(3)	0.50 (5)		
5.7pF(5R7)	F, G	0.30(3)	0.50 (5)		
5.8pF(5R8)	F, G	0.30(3)	0.50(5)		
5.9pF(5R9)	F, G	0.30 (3)	0.50 (5)		
6.0pF(6R0)	F, G	0.30(3)	0.50(5)		
6.1pF(6R1)	F, G	0.30(3)	0.50(5)		
6.2pF(6R2)	F, G	0.30 (3)	0.50(5)		
6.3pF(6R3)	F, G	0.30 (3)	0.50(5)		
6.4pF(6R4)	F, G	0.30(3)	0.50(5)		
6.5pF(6R5)	F, G	0.30(3)	0.50(5)		
6.6pF(6R6)	F, G	0.30 (3)	0.50 (5)		
6.7pF(6R7)	F, G	0.30(3)	0.50 (5)		
6.8pF(6R8)	F, G	0.30 (3)	0.50 (5)		
6.9pF(6R9)	F, G		0.50 (5)		
7.0pF(7R0)	F, G		0.50 (5)		
7.1pF(7R1)	F, G		0.50(5)		
7.2pF(7R2)	F, G		0.50 (5)		
7.3pF(7R3)	F, G		0.50 (5)		
7.4pF(7R4)	F, G		0.50 (5)		
7.5pF(7R5)	F, G		0.50 (5)		
7.6pF(7R6)	F, G		0.50(5)		
7.7pF(7R7)	F, G		0.50(5)		
7.8pF(7R8)	F, G		0.50(5)		
7.9pF(7R9)	F, G		0.50(5)		
8.0pF(8R0)	F, G		0.50(5)		
8.1pF(8R1)	F, G		0.50(5)		
8.2pF(8R2)	F, G		0.50(5)		
8.3pF(8R3)	F, G		0.50(5)		
8.4pF(8R4)	F, G		0.50(5)		
8.5pF(8R5)	F, G		0.50(5)		
0 6nE(0Pc)	E C		0 FO(F)		

0.50(5)

8.6pF(**8R6**)

F, G

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

Continued from the preceding page.

Part Number		GJM03	GJM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	e Tolerance and T Dimension	
8.7pF(8R7)	F, G		0.50 (5)
8.8pF(8R8)	F, G		0.50(5)
8.9pF(8R9)	F, G		0.50(5)
9.0pF(9R0)	F, G		0.50(5)
9.1pF(9R1)	F, G		0.50(5)
9.2pF(9R2)	F, G		0.50(5)
9.3pF(9R3)	F, G		0.50(5)
9.4pF(9R4)	F, G		0.50(5)
9.5pF(9R5)	F, G		0.50 (5)
9.6pF(9R6)	F, G		0.50(5)
9.7pF(9R7)	F, G		0.50(5)
9.8pF(9R8)	F, G		0.50(5)
9.9pF(9R9)	F, G		0.50 (5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

			Specifications															
No.	Ite	em	Temperature Compensating Type	Test Method														
1	Operating Temperati		−55 to +125°C	Reference Temperature : 25°C (2C, 3C, 4C : 20°C)														
2	2 Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage way be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} whichever is larger, should be maintained within the ravoltage range.		ge, V ^{p.p} or V ^{o.p} ,												
3	Appearar	nce	No defects or abnormalities	Visual inspection														
4	Dimensio	ons	Within the specified dimensions	Using calipers														
5	Dielectric	Strength	No defects or abnormalities	No failure should be of is applied between the provided the charge/d	e terminatio	ns for 1 to 5 se	econds,											
6	Insulation (I.R.)	Resistance	10,000M Ω min. or 500 Ω · F min. (Whichever is smaller)	The insulation resistar voltage not exceeding max. and within 2 min	g the rated v	oltage at 25℃												
7	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at 25℃ at the		at the												
			00.5 00.4001.000	frequency and voltage	e snown in t													
8	Q		30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	Frequency		1±0.1MHz												
			, ,	Voltage		0.5 to 5 v m	<u> </u>											
		Capacitance Change	Within the specified tolerance (Table A)	The capacitance change should be measured after 5 min. at each specified temperature stage.														
		Temperature Coefficient	Within the specified tolerance (Table A)	Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference.														
9	Capacitance Temperature Characteristics	Capacitance Drift	Capacitance	Within ±0.20% or ±0.0505	When cycling the tem 5, (5C: +25 to 125°C capacitance should be temperature coefficier. The capacitance drift between the maximur. 1, 3 and 5 by the capacitance.	 other tempe within the and capacis calculated and minim 	c. coeffs.: +20 specified toler citance change d by dividing the num measured	0 to 125℃) the ance for the e as Table A. ne differences										
													•	·	Step		emperature (°	C)
							1	Ref	erence Temp.	±2								
						2		-55±3										
							3 4	Ref	erence Temp. 125±3	±2								
				5	Ref	erence Temp.	±2											
10	Adhesive Strength of Termination				solder. Ther 1 sec. The s ne reflow me	thod and shou niform and free												
				Type GJM03 GJM15	0.3 0.4	0.9 1.5	0.3 0.5											
				GJIVI15	0.4	1.5	(in mm)											
					Fig. 1													

V	Continued	from	the	preceding	page.

\mathbb{L}	Continued fr	om the prec	eding page.					
NI-	là-		Specifications	Total Madhad				
No.	Ite	em	Temperature Compensating Type	Test Method				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the				
11	Vibration Resistance	Uniformly between the approximate limits of 1						
			No cracking or marking defects should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the				
12	2 Deflection		Type a b c GJM03 0.3 0.9 0.3 GJM15 0.4 1.5 0.5 Fig. 2	soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Flexure: ≤1 Capacitance meter 45 45 (in mm) Fig. 3				
13	Solderabi Terminati	•	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.				
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects					
14	Resistance to Soldering	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu				
• •	Heat	Q	Q≥400+20C C : Nominal Capacitance (pF)	solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.				
		I.R.	More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)					
		Dielectric Strength	No failure					
			The measured and observed characteristics should satisfy the specifications in the following table.	Fix the capacitor to the supporting jig in the same manner and				
		Appearance	No marking defects	under the same conditions as (10). Perform the five cycles				
4-	Temperature	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.				
15	Cycle	Q	Q≥400+20C C : Nominal Capacitance (pF)	Step 1 2 3 4 Temp. (°C) Min. Operating Room Temp. +0 Temp. Temp. Temp. Temp.				
		I.R.	More than $10,000\text{M}\Omega$ or $500\Omega \cdot \text{F}$ (Whichever is smaller)	Time (min.) 30±3 2 to 3 30±3 2 to 3				
		Dielectric Strength	No failure	1 mile (11mile)				
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects					
16	Humidity, Steady	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	Let the capacitor sit at $40\pm2^{\circ}$ C and 90 to 95% humidity for 500±12 hours.				
	State	Q	10pF and over, 30pF and below : Q≥275+ ½ C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure.				
		I.R.	More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)	1				

Continued from the preceding page.

س	Continued II		31-3-		
No.	Ita	em	Specifications	Test Method	
140.	The state of the s	,,,,	Temperature Compensating Type	rest weined	
			The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No marking defects		
17	Humidity	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours.	
17	Load	Q	30pF and below : Q≥100+ ½ C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.	
		I.R.	More than $500 \text{M}\Omega$ or $25 \Omega \cdot \text{F}$ (Whichever is smaller)		
		Dielectric Strength	No failure		
			The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No marking defects		
	High	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours	
18	Temperature Load	Q	10pF and over, 30pF and below : Q≧275+ ½ C 10pF and below : Q≧200+10C C : Nominal Capacitance (pF)	(temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.	
		I.R.	More than 1,000M Ω or 50 Ω · F (Whichever is smaller)		
		Dielectric Strength	No failure		
19	ESR		0.5pF≦C≦1pF : $350mΩ$ below 1pF <c≦5pf :="" <math="">300mΩ below 5pF<c≦10pf :="" <math="">250mΩ below</c≦10pf></c≦5pf>	The ESR should be measured at room Temperature. and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.	
			10pF <c≦20pf 400mω="" :="" below<="" td=""><td>The ESR should be measured at room Temperature. and frequency 500±50MHz with the equivalent of HP8753B.</td></c≦20pf>	The ESR should be measured at room Temperature. and frequency 500±50MHz with the equivalent of HP8753B.	

Table A

	(1)							
Char. Code	T O		Cap	oacitance Change	e from 25℃ Value	(%)		
	Temp. Coeff. (ppm/°C) *1	−55 ℃		−30°C		−10 ℃		
		(ββιίί/ C) - 1	Max.	Min.	Max.	Min.	Max.	Min.
	5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

^{*1 :} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

(2)

Char.		Capacitance Change from 20℃ Value (%)						
	Nominal Values (ppm/°C) *2	−55℃		−25 ℃		−10 °C		
	(ββιίί/ C) + 2	Max.	Min.	Max.	Min.	Max.	Min.	
2C	0±60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
3C	0±120	0.37	-0.90	0.82	-0.54	0.55	-0.36	
4C	0±250	0.56	-0.88	1.54	-1.13	1.02	-0.75	

^{*2 :} Nominal values denote the temperature coefficient within a range of 20 to 125°C.

GRM Series Data

■ Capacitance-Temperature Characteristics

■ Capacitance-DC Voltage Characteristics

■ Capacitance-AC Voltage Characteristics

■ Capacitance Change-Aging

■ Impedance-Frequency Characteristics

GRM Series Data

Continued from the preceding page.

■ Allowable Voltage-Frequency

■ Allowable Current-Frequency

■ Allowable Apparent Power

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. 05.12.14

Chip Monolithic Ceramic Capacitors

Microchips GMA Series

■ Features

- 1. Better micro wave characteristics
- 2. Suitable for by-passing
- 3. High density mounting

■ Applications

- 1. Optical device for telecommunication
- 2. IC, IC packaging built-in
- 3. Measuring equipment

	Part Number		Dimensions (mm)	
	Part Number	L	W	T
_	GMA05X	0.5 ±0.05	0.5 ±0.05	0.35 ±0.05
	GMA085	0.8 ±0.05	0.8 ±0.05	0.5 ±0.1

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GMA05XR72A101MD01	X7R (EIA)	100	100pF ±20%	0.5	0.5	0.35
GMA05XR72A151MD01	X7R (EIA)	100	150pF ±20%	0.5	0.5	0.35
GMA05XR72A221MD01	X7R (EIA)	100	220pF ±20%	0.5	0.5	0.35
GMA085R72A331MD01	X7R (EIA)	100	330pF ±20%	0.8	0.8	0.5
GMA085R72A471MD01	X7R (EIA)	100	470pF ±20%	0.8	0.8	0.5
GMA085R72A681MD01	X7R (EIA)	100	680pF ±20%	0.8	0.8	0.5
GMA085R72A102MD01	X7R (EIA)	100	1000pF ±20%	0.8	0.8	0.5
GMA05XF52A102ZD01	Y5V (EIA)	100	1000pF +80/-20%	0.5	0.5	0.35
GMA085F52A103ZD01	Y5V (EIA)	100	10000pF +80/-20%	0.8	0.8	0.5
GMA05XR71H331MD01	X7R (EIA)	50	330pF ±20%	0.5	0.5	0.35
GMA05XR71H471MD01	X7R (EIA)	50	470pF ±20%	0.5	0.5	0.35
GMA05XR71C681MD01	X7R (EIA)	16	680pF ±20%	0.5	0.5	0.35
GMA05XR71C102MD01	X7R (EIA)	16	1000pF ±20%	0.5	0.5	0.35
GMA085R71C102MD01	X7R (EIA)	16	1000pF ±20%	0.8	0.8	0.5
GMA05XR71C152MD01	X7R (EIA)	16	1500pF ±20%	0.5	0.5	0.35
GMA085R71C152MD01	X7R (EIA)	16	1500pF ±20%	0.8	0.8	0.5
GMA05XR71C222MD01	X7R (EIA)	16	2200pF ±20%	0.5	0.5	0.35
GMA085R71C222MD01	X7R (EIA)	16	2200pF ±20%	0.8	0.8	0.5
GMA085R71C332MD01	X7R (EIA)	16	3300pF ±20%	0.8	0.8	0.5
GMA085R71C472MD01	X7R (EIA)	16	4700pF ±20%	0.8	0.8	0.5
GMA085R71C682MD01	X7R (EIA)	16	6800pF ±20%	0.8	0.8	0.5
GMA085R71C103MD01	X7R (EIA)	16	10000pF ±20%	0.8	0.8	0.5
GMA05XF51C472ZD01	Y5V (EIA)	16	4700pF +80/-20%	0.5	0.5	0.35
GMA05XF51C682ZD01	Y5V (EIA)	16	6800pF +80/-20%	0.5	0.5	0.35
GMA05XF51C103ZD01	Y5V (EIA)	16	10000pF +80/-20%	0.5	0.5	0.35
GMA085F51C473ZD01	Y5V (EIA)	16	47000pF +80/-20%	0.8	0.8	0.5
GMA05XF51A153ZD01	Y5V (EIA)	10	15000pF +80/-20%	0.5	0.5	0.35
GMA085F51A104ZD01	Y5V (EIA)	10	0.10μF +80/-20%	0.8	0.8	0.5

No.	Ite	em	Specifications	Test Method
1	Operating Temperat Range		R7 : −55 to +125℃ F5 : −30 to +85℃	Reference Temperature:25°C
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{C,p} , whichever is larger, should be maintained within the rated voltage range.
3	Appearar	nce	No defects or abnormality	Visual inspection
4	Dimensio	ns	See the previous pages.	Visual inspection
5	Dielectric	: Strength	No defects or abnormality	No failure should be observed when a voltage of 250% of the rated voltage is applied between the both terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation	Resistance	10,000MΩ min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at normal temperature and humidity and within 2 minutes of charging.
7	Capacitance		Within the specified tolerance	The capacitance/D.F. should be measured at reference temperature at the frequency and voltage shown in the table.
8	Dissipatio (D.F.)	n Factor	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)	Frequency 1±0.1kHz Voltage 1±0.2Vrms
				The capacitance change should be measured after 5min. at each specified temp. stage. •The ranges of capacitance change compared with the Reference Temperature value over the temperature ranges shown in the table should be within the specified ranges.* In case of applying voltage, the capacitance change should be measured after 1 more min. with applying voltage in equilibration of each temp. stage.
	Capacitance Temperature Characteristics	No bias		Step Temperature (°C) Applying Voltage (V) 1 Reference Tempereture±2
9			No bias	R7 : Within +/–15% (–55 to +125°C) F5 : Within +22/–82% (–30 to +85°C)
				3 Reference Tempereture±2
				4 125±3 (for R7) 85±3 (for F5)
				*Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.
10	Mechanical Strength	Bond Strength	Pull force : 3.0g min.	MIL-STD-883 Method 2011 Condition D Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20) and bond a 20μm (0.0008 inch) gold wire to the capacitor terminal using an ultrasonic wedge bond. Then, pull wire.
		Die Shear Strength	Die Shear force : 200g min.	MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20). Apply the force parallel to the substrate.
		Appearance	No defects or abnormality	
1.	Vibration	Capacitance	Within the specified tolerance	Ramp frequency from 10 to 55Hz then return to 10Hz all within 1 minute. Amplitude: 1.5 mm (0.06 inch) max. total excursion.
11	Resistance	D.F.	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)	Apply this motion for a period of 2 hours in each of 3 mutually perpendicular directions (total 6 hours).
		Appearance	No marked defect	The capacitor should be set for 48±4 hours at room
		Capacitance Change	R7 : Within ±7.5% F5 : Within ±20%	temperature after one hour heat of treatment at $150+0/-10^{\circ}$, then measure for the initial measurement. Fix the capacitor to
12	Temperature Cycle	D.F.	R7 : 0.035 max. F5 : 0.09 max. (for 16V) 0.125 max. (for 10V)	the supporting jig in the same manner and under the same conditions as (11) and conduct the five cycles according to the temperatures and time shown in the following table. Set it for 48±4 hours at room temperature, then measure.
		I.R.	10,000M Ω min.	Step 1 2 3 4
		Dielectric		Temp. (°C) Min. Operating Room Max. Operating Room Temp. +0/-3 Temp. Temp. +3/-0 Temp.
		Strength	No failure	Time (min.) 30±3 2 to 3 30±3 2 to 3

Continued from the preceding page.

	Continued fr	om the prec	eding page.	
No.	Ite	em	Specifications	Test Method
		Appearance	No marked defect	
		Capacitance Change	R7 : Within ±12.5% F5 : Within ±30%	
13	Humidity (Steady State)	D.F.	R7 : 0.05 max. F5 : 0.125 max. (for 16V) 0.15 max. (for 10V)	Set the capacitor for 500±12 hours at 40±20℃, in 90 to 95% humidity. Take it out and set it for 48±4 hours at room temperature, then measure.
		I.R.	1,000M Ω min.	
		Dielectric Strength	No failure	
		Appearance	No marked defect	
		Capacitance Change	R7 : Within ±12.5% F5 : Within +30/—40%	Apply the rated voltage for 500±12 hours at 40±2°C, in 90 to 95% humidity and set it for 48±4 hours at room temperature, then measure. The charge/discharge current is
14	Humidity Load	D.F.	R7 : 0.05 max. F5 : 0.125 max. (for 16V) 0.15 max. (for 10V)	less than 50mA. • Initial measurement for F1/F5
		I.R.	500MΩ min.	Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 48±4 hours at room temperature. Perform the
		Dielectric Strength	No failure	initial measurement.
		Appearance	No marked defect	
		Capacitance Change	R7 : Within ±12.5% F5 : Within +30/-40%	A voltage treatment should be given to the capacitor, in which a DC voltage of 200% the rated voltage is applied for one hour at the maximum operating temperature ±3°C then it should be set
15	High Temperature Load	D.F.	R7 : 0.05 max. F5 : 0.125 max. (for 16V) 0.15 max. (for 10V)	for 48±4 hours at room temperature and the initial measurement should be conducted. Then apply the above mentioned voltage continuously for
		I.R.	1,000M Ω min.	1000±12 hours at the same temperature, remove it from the bath, and set it for 48±4 hours at room temperature, then
		Dielectric Strength	No failure	measure. The charge/discharge current is less than 50mA.

Mounting for testing: The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No.11 to 15 are performed.

Chip Monolithic Ceramic Capacitors

Capacitor Arrays GNM Series

■ Features

- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

■ Applications

General electronic equipment

Part Number	Dimensions (mm)						
Part Number	L	W	T	Р			
GNM1M2	1.37 ±0.15	1.0 ±0.15	0.6 ±0.1	0.64 +0.05			
GNIVITIVIZ	1.37 ±0.15 1.0 ±0.15		0.8 +0/-0.15	0.04 ±0.03			
GNM212	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1	1.0 ±0.1			
GNM214	2.0 ±0.13	1.25 ±0.15	0.6 ±0.1	0.5 ±0.05			
GNM314	3.2 ±0.15	1.6 ±0.15	0.8 ±0.1	0.8 +0.1			
GINIVIS 14	3.2 ±0.13	1.0 ±0.13	1.0 ±0.1	0.6 ±0.1			

Temperature Compensating Type

Part Number		GNM1M	GNM21	GN	M31
LxW		1.37x1.0	2.0x1.25	3.22	x1.6
TC		C0G (5C)	C0G (5C)		0G C)
Rated Volt.		50 (1H)	50 (1H)	100 (2A)	50 (1H)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension			
10pF(100)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
15pF(150)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
22pF(220)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
27pF(270)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
33pF(330)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
39pF(390)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
47pF(470)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
68pF(680)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
100pF(101)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
150pF(151)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
220pF(221)	K	0.6(2)	0.6(4)		0.8(4)
270pF(271)	K				0.8(4)
330pF(331)	K				0.8(4)

The part numbering code is shown in each (). The (4) code in T (mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM1M Series

Part Number			GNM1M					
LxW				1.37	x1.00			
TC X5R (R6) X7R (R7)								
Rated Volt.		16 (1C)	10 (1A)	6.3 (0J)	50 25 (1H) (1E)		16 (1C)	
Capacitance, Ca	pacitanc	e Tolerance and T Dir	mension	1	,		'	
1000pF(102)	K, M				0.6(2)			
2200pF(222)	K, M					0.6(2)		
4700pF(472)	K, M					0.6(2)		
10000pF(103)	K, M					0.6(2)		
22000pF(223)	K, M						0.6(2)	

⚠Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. Continued from the preceding page.

Part Number				GN	M1M					
LxW		1.37x1.00								
тс			X5R (R6)		X7R (R7)					
Rated Volt.		16 (1C)	10 (1A)			25 (1E)	16 (1C)			
Capacitance, Ca	pacitano	e Tolerance and T D	imension	1	,					
47000pF(473)	K, M						0.6(2)			
0.10μF(104) K, M			0.8(2)							
1.0μF(105) K, M		0.8(2)	0.8(2)	0.8(2)						

The part numbering code is shown in each (). The (2) code in T (mm) means number of elements (two).

High Dielectric Constant Type GNM21 Series

Part Number			GNM21						
LxW				2.0x1.25					
тс		XE (R	5R (6)						
Rated Volt.		16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)			
Capacitance, Ca	Capacitance, Capacitance Tolerance and T Dimension								
1000pF(102)	K, M			0.6(4)					
2200pF(222)	K, M				0.6(4)				
4700pF(472)	K, M				0.6(4)				
10000pF(103)	K, M				0.6(4)				
22000pF(223)	K, M					0.85(4)			
47000pF(473)	K, M					0.85(4)			
0.10μF(104)	K, M					0.85(4)			
0.47μF(474)	K, M	0.85(2)							
1.0μF(105)	K, M	0.85(2)	0.85(4)						
2.2μF(225)	K, M		0.85(2)						

The part numbering code is shown in each (). The (2) code in T (mm) means number of elements (two).

High Dielectric Constant Type GNM31 Series

Part Number			G	SNM31	
LxW			3	.2x1.6	
тс			X7R (R7)		X5R (R6)
Rated Volt.		100 (2A)	50 (1H)	16 (1C)	10 (1A)
Capacitance, Ca	pacitano	e Tolerance and T Dimension			
220pF(221)	K, M	0.8(4)			
330pF(331)	K, M	0.8(4)			
470pF(471)	K, M	0.8(4)	0.8(4)		
680pF(681)	K, M	0.8(4)	0.8(4)		
1000pF(102)	K, M	0.8(4)	0.8(4)		
1500pF(152)	K, M	0.8(4)	0.8(4)		
2200pF(222)	K, M	0.8(4)	0.8(4)		
3300pF(332)	K, M	0.8(4)	0.8(4)		
4700pF(472)	K, M	0.8(4)	0.8(4)		
6800pF(682)	K, M		0.8(4)		
10000pF(103)	K, M		0.8(4)		

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specificaion and Test Methods (2) about 1.0μF products.

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specificaion and Test Methods (2) about X5R, 10V products.

Continued from the preceding page.

Part Number			GNM31							
LxW		3.2x1.6								
тс			X5R (R6)							
Rated Volt.		100 (2A)	50 (1H)	16 (1C)	10 (1A)					
Capacitance, Capacitance Tolerance and T Dimension										
15000pF(153)	K, M		0.8(4)							
22000pF(223)	K, M			0.8(4)						
33000pF(333)	K, M			0.8(4)						
47000pF(473)	K, M			1.0(4)						
68000pF(683) K, M				1.0(4)						
0.10μF(104) K, M				1.0(4)						
1.0μF(105)	K, M				0.85(4)					

The part numbering code is shown in each (). The (4) code in T (mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

NI-	14.0			Specifications	Took Mashard				
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method				
1	Operating Temperating Range	•	5C : -55 to +125°C	R7: -55 to +125°C R6: -30 to +85°C					
2	Rated Vo	ltage	See the previous page	ges.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{o-p} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearar	nce	No defects or abnorr	malities	Visual inspection				
4	Dimensio	ns	Within the specified	dimensions	Using calipers				
5	Dielectric	Strength	No defects or abnorr	nalities	No failure should be observed when 300% of the rated voltage (5C) or 250% of the rated voltage (R7) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.				
6	Insulation Resistant		More than 10,000Ms (Whichever is smalle		The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.				
7	Capacita	nce	Within the specified	tolerance	The capacitance/Q/D.F. should be measured at 25°C at the				
	Q/		30pF min. : Q≧1000 30pF max. :	Char. 25V min. 16V 10V 6.3V	frequency and voltage shown in the table. Char. 5C R7				
8	8 Dissipation Factor (D.F.)		Q≧400+20C	R7, R6 0.025 0.035 0.035 0.05 max. max. max. max. max.	Item Trequency 1±0.1MHz 1±0.1kHz				
	(D.F.)		C : Nominal Capacitance (pF)		Voltage 0.5 to 5Vrms 1.0±0.2Vrms				
		Capacitance Change	Within the specified tolerance (Table A) Within the	Char. Temp. Range Reference Temp. Change R7 -55°C to +125°C to +85°C 25°C Within ±15%	The capacitance change should be measured after 5 min. at each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the				
9	Capacitance Temperature Characteristics	Coefficent	specified tolerance (Table A)		steps 1, 3 and 5 by the cap. value in step 3.				
	Onnucorsito	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.)		Step Temperature (°C) 1 25±2 2 -55±3 (for 5C/R7), -30±3 (for F5) 3 25±2 4 125±3 (for 5C/R7), 85±3 (for F5) 5 20±2 (2) High Dielectric Constant Type The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges.				
			No removal of the te	rminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in				
10	Adhesive of Termin	Strength lation	GNM 2 GNM 2 Solder resist Copper foil		Fig. 1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Type a b c d GNM1M2 0.5 1.6 0.32 0.32 GNM212 0.4 1.8 0.15 0.5 GNM214 0.6 2.0 0.25 0.25 GNM314 0.8 2.5 0.4 0.4 (in mm) Fig. 1				

Continued from the preceding page.

7	Continued fr	om the prec	eding page.						
				Specifications					
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method				
		Appearance	No defects or abnorr	nalities	Solder the capacitor to the test jig (glass epoxy board) in the				
		Capacitance	Within the specified	tolerance	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion				
11	Vibration Resistance	Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	Char. 25V min. 16V 10V 6.3V R7, R6 0.025 max. 0.035 max. 0.035 max. 0.05 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).				
			No cracking or marki	ing defects should occur.	Solder the capacitor on the test jig (glass epoxy board) shown				
			•GNM□□4	•GNM□□2	in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3 for 5±1 sec.				
12	Deflection	n	07 100 1.00 1.00 1.00 1.00 1.00 1.00 1.0	5.0 100	The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec.				
	Deflection		GNM212 2 GNM214 2	t=0.8mm a	R230 Capacitance meter 45 Fig. 3				
13	Solderab Terminati		75% of the termination continuously.	ons are to be soldered evenly and	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.				
	Resistanc Soldering		The measured and conspecifications in the	bserved characteristics should satisfy the following table.					
		Appearance	No marking defects						
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7, R6 : Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours, then measure.				
14		Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	Char. 25V min. 16V 10V 6.3V R7, R6 0.025 max. 0.035 max. 0.035 max. 0.05 max.	• Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.				
		I.R.	More than 10,000Mg	Ω or $500\Omega \cdot F$ (Whichever is smaller)					
		Dielectric Strength	No failure						

Continued on the following page.

				Specifications								
lo.	Ite	em	Temperature Compensating Type	Н	igh Diel	ectric T	уре	_	Tes	st Metho	d	
	Tempera Cycle	ture	The measured and of specifications in the		stics sh	ould sat	isfy the	Fix the capaci	tor to the supp	ortina iia	in the same ma	anner and
		Appearance	No marking defects	<u> </u>				under the sam	e conditions a	s (10). Pe	erform the five	cycles
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7, R6 : Within ±	7.5%			according to the four heat treatments listed in the followable. Let sit for 24±2 hours (temperature compensation or 48±4 hours (high dielectric constant type) at room temperature, then measure. Step 1 2 3				
5		Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C C:Nominal Capacitance (pF)	Char. 25V min. R7, R6 0.025 max.	16V 0.035 max.	10V 0.035 max.	6.3V 0.05 max.	Temp. +- Time (min.) 30±3 • Initial measurement for Perform a heat treatment	Operating Temp. +0/-3 30±3	Room Temp. 2 to 3	Max. Operating Temp. +3/–0 30±3	Room Temp. 2 to 3
		I.R.	More than 10,000Ms	∟ 2 or 500Ω · F (Whic	hever is	smalle	r)	Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.				
		Dielectric Strength	No failure	,			<u> </u>					
	Humidity State	Steady	The measured and of specifications in the		stics sh	ould sat	isfy the					
		Appearance	No marking defects									
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	R7, R6 : Within ±	12.5%							
16		Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Char. 25V min R7, R6 0.05 max.	. 16V 0.05 max	5 (V/6.3V 0.05 nax.	Sit the capacitor at 40±2°C and 90 to 95% humidity for 8 hours. Remove and let sit for 24±2 hours at room temperature, measure.				
		I.R.	More than 1,000MΩ	or 50Ω · F (Whiche	ver is s	maller)						
		Dielectric Strength	No failure									
	Humidity	Load	The measured and compecifications in the		stics sh	ould sat	isfy the					
		Appearance	No marking defects	Γ								
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R7, R6 : Within ±	12.5%			Apply the rate)±2°C an	d 90 to 95% hu	ımidity fo
17		Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal	Char. 25V min. R7, R6 0.05 max.	16V 0.05 max	(//6.3V).05 nax.	Remove and let sit for 24±2 hours at room tempratu muasure. The charge/discharge current is less than 50mA.		re, then		
			Capacitance (pF)					-				
		I.R.	More than 500MΩ or	25Ω · F (Whicheve	er is sm	aller)		-				
		Dielectric Strength	No failure									

Continued from the preceding page.

	- Continued in	on the piec			
				Specifications	
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
	High Tem Load	perature	The measured and o	bserved characteristics should satisfy the following table.	
		Appearance	No marking defects		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R7, R6 : Within ±12.5%	Apply 200% of the rated voltage for 1000±12 hours at the maximun operating temperature ±3°C. Let sit for 24±2 hou room temperature, then measure.
18		Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V/6.3V R7, R6 0.04 max. 0.05 max. 0.05 max.	The charge/discharge current is less than 50mA. • Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximun operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature.Perform initial measurement.
		I.R.	More than 1,000MΩ	or $50\Omega \cdot F$ (Whichever is smaller)	

Table A

	Name in all Malana	Capacitance Change from 25℃ (%)							
Char.	Nominal Values (ppm/°C) Note 1	−55℃		−30°C		−10 °C			
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.

No.	Ite	em		Spe	cifications			Test Method			
1	Operating Temperatu	ıre Range	R6 : -55°C	to +85°C							
2	Rated Vo	Itage	See the pre	evious pages.			The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, vp-p or Vo-p, whichever is larger, should be maintained within the rated voltage range.				
3	Appearar	ice	No defects	or abnormalities			Visual inspection				
4	Dimensio	ns	Within the s	specified dimension	on		Using calipers				
5	Dielectric	Strength	No defects	or abnormalities			No failure should be is applied between the provided the charge.	he terminations for	1 to 5 seco	nds,	
6	Insulation	Resistance	50Ω · F mir	n.			The insulation resist voltage not exceedir max. and within 1 m	ng the rated voltage			
7	Capacita		Within the s	specified toleranc	е		The capacitance/D.F frequency and voltage			at the	
8	Dissipation (D.F.)	on Factor	0.1 max.				Capacitance R6	Frequency 1±0.1kHz		Itage 0.1Vrms	
	Capacitar	nce			Reference		The capacitance chaeach specified temporal Step 1 2 3 4	erature stage. Tempe 2	rature (°C) 5±2 55±3 5±2 5±3	r 5 min.at	
9		Temperature		Temp. Range	Temp.	Cap. Change	5		5±3 5±2		
	Character	istics	R6	−55 to +85°C	25°C	Within ±15%	The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. • Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.			ole should be	
10	Adhesive Strength of Termination		No removal	of the terminatio	ns or other defe	ects should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Type a b c d GNM1M2 0.5 1.6 0.32 0.32 GNM212 0.4 1.8 0.15 0.5			±1 sec. The the reflow ne soldering d 0.32	
		Δnnearance	No defects	or abnormalities			Solder the capacitor	to the test iin (alas	s enavy ha	ard) in	
		Appearance Capacitance		or apnormalities	r abnormalities pecified tolerance		Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied			as (10). monic motion	
11	Vibration	D.F.	0.1 max.		uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).			d 55Hz. o 10Hz, is motion			

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

GNM Series Specifications and Test Methods (2)

Continued from the preceding page Specifications No Item Test Method No cracking or marking defects shal occur. Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Pressurizing speed : 1.0mm/sec Pressurize R230 Thickness: 0.8mm Deflection Flexure : ≤1 Fig. 3 Type b С d GNM1M2 2.0±0.5 0.5±0.05 0.32±0.05 0.32±0.05 GNM212 2.0±0.05 0.6±0.05 0.5±0.05 0.5±0.05 (in mm) Fig. 2 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at Solderability of 75% of the terminations are to be soldered evenly 80 to 120°C for 10 to 30 seconds. After preheating, immerse in 13 Termination and continuously. eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C. Appearance No marking defects Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder Capacitance R6: Within ±7.5% solution at 270±5°C for 10±0.5 seconds. Change Resistance Let sit at room temperature for 24±2 hours, then measure. 14 to Soldering D.F. 0.1 max. Initial measurement Heat 500 - F min I R Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform Dielectric No failure the initial measurement. Strength Fix the capacitor to the supporting jig in the same manner and Appearance No marking defects under the same conditions as (10) Capacitance R6: Within ±12.5% Perform the five cycles according to the four heat treatments Change listed in the following table. D.F. 0.1 max. Let sit for 24±2 hours at room temperature, then measure. Step I.R $50\Omega \cdot F \min$ Temperature Min. Operating Room Max. Operating Room 15 Temp. (℃) Cycle Temp Temp. Temp Temp. 30±3 30±3 Time (min.) 2 to 3 2 to 3 Dielectric No failure Initial measurement Strength Perform a heat treatment at 150 +0/-10 °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. Apply the rated voltage at 40±2°C and 90 to 95% humidity for Appearance No marking defects 500±12 hours. The charge/discharge currentis less than 50mA. Capacitance High R6: Within ±12.5% Initial measurement Change Temperature Perform a heat treatment at 150 +0/-10°C for one hour D.F. 0.2 max. High and then let sit for 24±2 hours at room temperature. Humidity Perform the initial measurement. I.R. $12.5\Omega \cdot F min.$ (Steady) Measurement after test Perform a heat treatment at 150 +0/-10°C for one hour Dielectric No failure and then let sit for 24±2 hours at room temperature, then Strength No marking defects Apply 125% of the rated voltage for 1000±12 hours at the Appearance maximum operating temperature ±3°C. Let sit for 24±2 hours Capacitance R6: Within ±12.5% at room temperature, then measure. Change The charge/discharge current is less than 50mA. D.F. 0.2 max Initial measurement Perform a heat treatment at 150 +0/-10°C for one hour $25\Omega \cdot F min.$ I.R. Durability and then let sit for 24±2 hours at room temperature. Perform the initial measurement. Measurement after test Dielectric No failure Perform a heat treatment at 150 +0/-10°C for one hour Strength and then let sit for 24±2 hours at room temperature, then

Chip Monolithic Ceramic Capacitors

for Ultrasonic Sensors GRM Series

■ Features

- 1. Proper to compensate for ultrasonic sensor
- 2. Small chip size and high cap. value

■ Applications

Ultrasonic sensor

(Back sonar, Corner sonar and etc.)

Part Number		Dimensions (mm)								
Part Number	L	W	T	е	g min.					
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7					

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM2199E2A102KD42	ZLM (Murata)	100	1000 ±10%	2.0	1.25	0.85
GRM2199E2A152KD42	ZLM (Murata)	100	1500 ±10%	2.0	1.25	0.85

No.	Ite	em	Specifications		Test Method
1	Operating Temperat		−25 to +85°C	Reference Tempera	ature: 20°C
2	Rated Vo	ltage	See the previous pages.	may be applied con When AC voltage is	s defined as the maximum voltage which tinuously to the capacitor. s superimposed on DC voltage, V ^{p.p} or V ^{0.p} , should be maintained within the rated volt-
3	Appearar	nce	No defects or abnormalities	Visual inspection	
4	Dimensio	ns	Within the specified dimensions	Using calipers	
5	Dielectric	Strength	No defects or abnormalities	is applied between	e observed when 300% of the rated voltage the terminations for 1 to 5 seconds, provid- narge current is less than 50mA.
6	Insulation (I.R.)	Resistance	More than 10,000MΩ		tance should be measured with a DC volt- the rated voltage at 20℃ and 75%RH max. s of charging.
7	Capacita	nce	Within the specified tolerance	The capacitance/D	F. should be measured at 20°C with
8	Dissipatio (D.F.)	n Factor	0.01 max.		ncy and 1±0.2Vrms in voltage.
9	Capacitar Temperat		Within −4,700 ±1.000 ppm/°C (at −25 to ±20°C) Within −4,700 ±500 ppm/°C (at ±20 to ±85°C)	capacitance measu When cycling the te 5, the capacitance s the temperature coe	ange should be measured after 5 min. at
	Character	istics	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	1	20±2
				2	-25±3
				3	20±2
				4	85±3
				5	20±2
10	Adhesive of Termin		No removal of the terminations or other defect should occur.	Fig.1 using a eutect direction of the arro The soldering shoul reflow method and soldering is uniform	r to the test jig (glass epoxy board) shown in tic solder. Then apply 10N force in the w. Id be done either with an iron or using the should be conducted with care so that the land free of defects such as heat shock. Solder resist Baked electrode or copper foil a b c 1.2 4.0 1.65 (in mm) Fig. 1
		Appearance	No defects or abnormalities	Solder the capacito	r to the test jig (glass epoxy board) in the
			Within the specified tolerance		under the same conditions as (10).
11	Vibration Resistance	D.F.	0.01 max.	 The capacitor should having a total amplication of the uniformly between the frequency range, from the betraversed in app 	Id be subjected to a simple harmonic motion tude of 1.5mm, the frequency being varied the approximate limits of 10 and 55Hz. The om 10 to 55Hz and return to 10Hz, should roximately 1 minute. This motion should be of 2 hours in each of 3 mutually perpendic-

Continued on the following page.

62

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Specifications and Test Methods

Continued from the preceding page Specifications No Item Test Method Solder the capacitor to the test jig (glass epoxy boards) shown No cracking or marking defects should occur. in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 50 Pressurizing speed: 1.0mm/sec _Pressurize Deflection 12 R230 t: 1.6mm 100 Type а h C Capacitance meter GRM21 1.2 4.0 1.65 45 (in mm) (in mm) Fig. 2 Fig.3 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at Solderability of 75% of the terminations are to be soldered evenly and 80 to 120°C for 10 to 30 seconds. After preheating, immerse in 13 Termination continuously. eutectic solder solution for 2±0.5 seconds at 230±5℃ or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C. No defects or abnormalities Appearance Capacitance Within ±7.5% Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the Change Resistance capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution 14 to Soldering D.F 0.01 max at 270±5°C for 10±0.5 seconds. Let sit at room temperature for Heat More than $10,000M\Omega$ I.R. 24±2 hours, then measure. Dielectric No failure Strength Appearance No defects or abnormalities Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Capacitance Within ±7.5% Perform the five cycles according to the four heat treatments Change listed in the following table. Let sit for 24±2 hours at room tem-Temperature perature, then measure. D.F. 0.01 max 15 Cycle Step I.R. More than $10,000M\Omega$ 2 3 4 85⁺³_o -25±3 Room Temp. Room Temp. Temp. (℃) Dielectric No failure 30±3 2 to 3 30±3 Time (min.) 2 to 3 Strength Appearance No defects or abnormalities Capacitance Within ±12.5% Sit the capacitor at 40±2℃ and 90 to 95% humidity for 500±12 Change Humidity, Steady D.F. 0.02 max Remove and let sit for 24±2 hours at room temperature, then State I.R. More than 1,000M Ω measure Dielectric No failure Strength Appearance No defects or abnormalities Apply the rated voltage at 40±2℃ and 90 to 95% humidity for Capacitance Within ±12.5% Humidity 500±12 hours. Remove and let sit for 24±2 hours at room tem-Change 17 Load perature, then measure. The charge/discharge current is less D.F. 0.02 max. than 50mA. I.R. More than $500M\Omega$ No defects or abnormalities Appearance Capacitance Apply 200% of the rated voltage for 1,000±12 hours at 85±3℃. Within ±12.5% Change Let sit for 24±2 hours at room temperature, then measure. 18 Temperature The charge/discharge current is less than 50mA. Load D.F. 0.02 max

I.R.

More than $1,000M\Omega$

Low ESL LLL/LLA/LLM Series

- Features (Reversed geometry Low ESL Type)
- 1. Low ESL, good for noise reduction for high frequency
- 2. Small, high cap
- Applications

Part Number

- 1. High speed micro processor
- 2. High frequency digital equipment

Part Number		Dimensions (mm)	
Fait Number	L	W	Т
LLL185	1.6 ±0.1	0.8 ±0.1	0.6 max.
LLL216	2.0 +0.1	1.25 ±0.1	0.6 ±0.1
LLL219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1
LLL317	3.2 ±0.15	1.6 ±0.15	0.7 ±0.1
LLL31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1

LLL31

Reversed geometry Low ESL Type

LLL18

Part Number				L 10						LZ I					LL	LJI		
LxW			1.6	8.0x					2.0x	1.25					3.2	x1.6		
тс			X7R (R7)			X7S (C7)			X7R (R7)			X7S (C7)			X7R (R7)			X5R (R6)
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	6.3 (0J)
Capacitance (Ca	pacitar	nce par	t numbe	ering co	de) and	d T (mm	n) Dime	nsion (T	Dimen	sion pa	rt numb	ering o	ode)					
2200pF (222)	0.5 (5)																	
3300pF (332)	0.5 (5)																	
4700pF (472)	0.5 (5)						0.6 (6)											
6800pF (682)		0.5 (5)					0.6 (6)											
10000pF (103)		0.5 (5)	0.5 (5)				0.6 (6)						0.7 (7)					
15000pF (153)		0.5 (5)	0.5 (5)				0.6 (6)						0.7 (7)	0.7 (7)				
22000pF (223)		0.5 (5)	0.5 (5)				0.6 (6)	0.6 (6)					0.7 (7)	0.7 (7)				
33000pF (333)			0.5 (5)				0.85 (9)	0.6 (6)	0.6 (6)				0.7 (7)	0.7 (7)				
47000pF (473)			0.5 (5)					0.6 (6)	0.6 (6)				0.7 (7)	0.7 (7)				
68000pF (683)			0.5 (5)					0.6 (6)	0.6 (6)				0.7 (7)	0.7 (7)				
0.10μF (104)				0.5 (5)				0.6 (6)	0.6 (6)				1.15 (M)	0.7 (7)				
0.15μF (154)					0.5 (5)			0.85 (9)	0.6 (6)				1.15 (M)	0.7 (7)				
0.22μF (224)					0.5 (5)					0.6 (6)				1.15 (M)				
0.33μF (334)						0.5 (5)				0.6 (6)				1.15 (M)	0.7 (7)			
0.47μF (474)						0.5 (5)				0.85 (9)				1.15 (M)	0.7 (7)			

LLL21

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

Part Number			LLI	L18					LLI	L21					LLI	L31		
LxW			1.6	8.0x					2.0x	1.25					3.2	x1.6		
тс			X7R (R7)			X7S (C7)			X7R (R7)			X7S (C7)			X7R (R7)			X5R (R6)
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	6.3 (0J)
Capacitance (Ca	pacitar	nce par	t numbe	ering co	de) and	mm) T b) Dimer	nsion (T	Dimen	sion pa	rt numb	ering c	ode)	•			•	
0.68μF (684)											0.85 (9)				1.15 (M)	0.7 (7)		
1.0μF (105)						0.5 (5)					0.85 (9)				1.15 (M)	0.7 (7)		
1.5μF (155)											0.85 (9)					1.15 (M)	0.7 (7)	
2.2μF (225)												0.85 (9)				1.15 (M)	0.7 (7)	
4.7μF (475)																	1.15 (M)	
10μF (106)																		1.25 (B)

The part numbering code is shown in ().

Continued from the preceding page.

Dimensions are shown in mm and Rated Voltage in Vdc.

Reversed geometry Low ESL Type Low Profile

Part Number		LLI	L18				LL	L21				LL	L31	
LxW		1.6	x0.8				2.0x	1.25				3.2	x1.6	
тс		X7R (R7)		X7S (C7)			X7R (R7)			X7S (C7)			7R ? 7)	
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitanc	e part nur	mbering o	ode) and	T (mm) D	imension	(T Dimen	sion part	numberir	ig code)				
680pF(681)					0.5(5)									
1000pF(102)					0.5(5)									
1500pF(152)					0.5(5)									
2200pF(222)					0.5(5)									
3300pF(332)					0.5(5)									
4700pF(472)					0.5(5)									
6800pF(682)					0.5(5)									
10000pF(103)	0.5(5)	0.5(5)			0.5(5)	0.5(5)					0.5(5)			
15000pF(153)	0.5(5)	0.5(5)			0.5(5)	0.5(5)					0.5(5)	0.5(5)		
22000pF(223)		0.5(5)				0.5(5)	0.5(5)				0.5(5)	0.5(5)		
33000pF(333)		0.5(5)				0.5(5)	0.5(5)				0.5(5)	0.5(5)		
47000pF(473)		0.5(5)					0.5(5)					0.5(5)	0.5(5)	
68000pF(683)			0.5(5)				0.5(5)					0.5(5)	0.5(5)	
0.10μF(104)			0.5(5)				0.5(5)					0.5(5)	0.5(5)	
0.15μF(154)								0.5(5)					0.5(5)	
0.22μF(224)				0.5(5)				0.5(5)					0.5(5)	
0.33μF(334)				0.5(5)				0.5(5)					0.5(5)	
0.47μF(474)									0.5(5)					0.5(5)
0.68μF(684)														0.5(5)
1.0μF(105)										0.5(5)				

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Features (Eight Terminals Low ESL Type)

- 1. Low ESL (100pH), suitable to decoupling capacitor for 1GHz clock speed IC.
- 2. Small, large cap

■ APPLICATIONS

- 1. High speed micro processor
- 2. High frequency digital equipment.

Part Number		Dime	nsions (mm)	
Part Number	L	W	T	Р
LLA185	1.6 ±0.1	0.8 ±0.1	0.5 +0.05/-0.1	0.4 ±0.1
LLA215	2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05
LLA219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.5 ±0.05
LLA315	3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1
LLA319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.8 ±0.1
LLA31M	3.2 ±0.15	1.6 ±0.15	1.15±0.1	0.8 ±0.1

Eight Terminals Low ESL Type

Part Number	LLA18			LLA21				LLA31	1
LxW	1.6x0.8			2.0x1.25				3.2x1.6	
тс	X7S (C7)			(7R R7)		X7S (C7)		X7R (R7)	
Rated Volt.	(0G)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	(0G)
Capacitance (Ca	pacitance par	t numbering co	de) and T (mr	m) Dimension (T	Dimension pa	rt numbering	code)		
10000pF(103)		0.85(9)							
15000pF(153)		0.85(9)							
22000pF(223)		0.85(9)							
33000pF(333)		0.85(9)							
47000pF(473)		0.85(9)							
68000pF(683)			0.85(9)						
0.10μF(104)			0.85(9)				0.85(9)		
0.15μF(154)			0.85(9)				1.15(M)		
0.22μF(224)			0.85(9)				0.85(9)		
0.33μF(334)	0.5(5)			0.85(9)			0.85(9)		
0.47μF(474)	0.5(5)			0.85(9)			0.85(9)		
0.68μF(684)				0.85(9)			0.85(9)		
1.0μF(105)	0.5(5)				0.85(9)			0.85(9)	
1.5μF(155)					0.85(9)			0.85(9)	
2.2μF(225)						0.85(9)			0.85(9)
4.7μF(475)						0.85(9)			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Eight Terminals Low ESL Type Low Profile

Part Number			LLA21				LLA31		
LxW			2.0x1.25		3.2x1.6				
тс		X (R	7R ?7)		X7S (C7)		X7R (R7)		
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)	
Capacitance (Cap	acitance part n	umbering code)	and T (mm) Dim	ension (T Dime	nsion part numb	ering code)			
10000pF(103)	0.5(5)								
15000pF(153)	0.5(5)								
22000pF(223)	0.5(5)								
33000pF(333)		0.5(5)							
47000pF(473)		0.5(5)							
68000pF(683)		0.5(5)							
0.10μF(104)		0.5(5)				0.5(5)			
0.15μF(154)			0.5(5)	0.5(5)		0.5(5)			
0.22μF(224)			0.5(5)	0.5(5)		0.5(5)			

muRata

Continued from the preceding page.

Part Number			LLA21				LLA31			
LxW			2.0x1.25			3.2x1.6				
тс	X7R (R7) X7S (C7) X7R (R7) 25 16 10 6.3 4 16 10									
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)		
Capacitance (Ca	pacitance part n	numbering code)	and T (mm) Dim	nension (T Dimen	sion part numbe	ring code)	1			
0.33μF(334)			0.5(5)	0.5(5)			0.5(5)			
0.47μF(474)				0.5(5)			0.5(5)			
0.68μF(684)				0.5(5)			0.5(5)			
1.0μF(105)					0.5(5)			0.5(5)		
1.5μF(155)					0.5(5)			0.5(5)		
2.2μF(225)					0.5(5)			0.5(5)		

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Features (Ten Terminals Low ESL Type)

- 1. Low ESL (45pH), suitable to decoupling capacitor for 2GHz clock speed IC.
- 2. Small, large cap

■ APPLICATIONS

- 1. High speed micro processor
- 2. High frequency digital equipment

Part Number		Dimensions (mm)								
Part Number	L	W	T	Р						
LLM215	2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05						
LLM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.5 ±0.05						
LLM315	3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1						
LLM31M	3.2 ±0.15	1.6 ±0.15	1.15±0.1	0.8 ±0.1						

Ten Terminals Low ESL Type

Part Number		LLI	W21			LLM31	
LxW		2.0x	1.25			3.2x1.6	
тс		X7R (R7)		X7S (C7)		X7R (R7)	
Rated Volt.	25 (1E)	16 (1C)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Cap	pacitance part nur	nbering code) and	T (mm) Dimension	(T Dimension part	numbering code)		
10000pF(103)	0.85 (9)						
15000pF(153)	0.85 (9)						
22000pF(223)	0.85(9)						
33000pF(333)	0.85(9)						
47000pF(473)	0.85(9)						
68000pF(683)		0.85(9)					
0.10μF(104)		0.85(9)			1.15(M)		
0.15μF(154)		0.85(9)			1.15(M)		
0.22μF(224)		0.85(9)			1.15(M)		
0.33μF(334)			0.85(9)		1.15(M)		
0.47μF(474)			0.85(9)		1.15(M)		
0.68μF(684)			0.85(9)		1.15(M)		
1.0μF(105)			0.85(9)		1.15(M)		
1.5μF(155)			0.85(9)			1.15(M)	
2.2μF(225)				0.85(9)		1.15(M)	
3.3μF(335)							1.15(M)
4.7μF(475)							1.15(M)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Ten Terminals Low ESL Type Low Profile

Part Number		LLI	W21	,		LLM31			
LxW		2.0x	1.25			3.2x1.6			
тс		X7R (R7)		X7S (C7)	X7R (R7)				
Rated Volt.	25 (1E)	16 (1C)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)		
Capacitance (Ca	pacitance part nu	mbering code) and	T (mm) Dimension	(T Dimension part	numbering code)				
10000pF(103)	0.5 (5)								
15000pF(153)	0.5 (5)								
22000pF(223)	0.5 (5)								
33000pF(333)		0.5 (5)							
47000pF(473)		0.5(5)							
68000pF(683)		0.5(5)							
0.10μF(104)		0.5(5)			0.5(5)				

Continued from the preceding page.

Part Number		LLI	W21	LLM31					
LxW	2.0x1.25				3.2x1.6				
тс	X7R (R7)			X7S (C7)	X7R (R7)				
Rated Volt.	25 (1E)	16 (1C)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)		
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)									
0.22μF(224)			0.5 (5)		0.5(5)				
0.33μF(334)			0.5 (5)			0.5 (5)			
0.47μF(474)			0.5 (5)			0.5 (5)			
0.68μF(684)			0.5 (5)			0.5 (5)			
1.0μF(105)				0.5 (5)					
1.5μF(155)				0.5 (5)					
2.2μF(225)				0.5(5)			0.5(5)		

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Ite	em	Specifications			Test Method				
1	Operating Temperat Range	e e	R6: -55 to +85°C R7, C7: -55 to +125°C							
2			See the prev	vious pages.			The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{o-p} , whichever is larger, should be maintained within the rated voltage range.			
3	3 Appearance		No defects of	or abnormalities			Visual inspection			
4	4 Dimensions		Within the s	pecified dimension	n		Using calipers			
5	5 Dielectric Strength		No defects of	or abnormalities			No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation Resistance		More than 10,000M Ω or 500 Ω · F (Whichever is smaller)				The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.			
7	Capacitance		Within the specified tolerance					The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table.		
8	Dissipation Factor (D.F.)		W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1				C≦10μ C≦10μI	pacitance IF (10V min.) F (6.3V max.) C>10µF	Frequency 1±0.1kHz 1±0.1kHz 120±24kHz	Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms
9	Capacitance Temperature Characteristics Adhesive Strength of Termination		Char. R6 R7 C7	Temp. Range (°C) -55 to +85 -55 to +125 -55 to +125	Reference Temp. 25°C 25°C 25°C	Cap.Change Within ±15% Within ±15% Within ±22%		tance change sied temperature	hould be measure e stage. Temperature (°C 25±2 -55±3 25±2 125±3 25±2 25±2	
10			No removal of the terminations or other defect should occur.				The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. Solder the capacitor to the test jig (glass epoxy board) using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
		Appearance	No defects or abnormalities				Solder the capacitor to the test jig (glass epoxy board) in			
		Capacitance			<u> </u>		the same m	nanner and und	er the same cond	litions as (10). The
11	Vibration Resistance D.F.		W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1				capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).			
12	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.				Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C, or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.			
	Appearance		No marking defects				Preheat the capacitor at 120 to 150°C for 1 minute. Immerse			
	Resistance	Capacitance Change	Within ±7.5% W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1				the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 48±4 hours, then measure.			
13	to Soldering	D.F.								
	Heat	I.R.		$0,000$ M Ω or 500		er is smaller)	 Initial measurement. Perform a heat treatment at 150^{±0}₋₁₀ °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement. 			
		Dielectric Strength	No failure	0,000ivis2 01 300s	2 1 (VVIIICIIEVE	o is smaller)				
		Suengui					measurem	iei II.		

Continued from the preceding page

$\overline{\mathbb{Z}}$	Continued fr	rom the pred	eding page.							
No.	Ite	em	Specifications	Test Method						
		Appearance Capacitance Change	No marking defects Within ±7.5% *1	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 48±4 hours at room						
		D.F.	W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1	temperature, then measure. Step 1 2 3 4						
14	Temperature Cycle	I.R.	More than 10,000M Ω or 500 Ω · F (Whichever is smaller)	Temp. (°C) Min. Operating Room Max. Operating Room Temp. $\stackrel{+\circ}{\sim}$ Temp. Temp. $\stackrel{+\circ}{\sim}$ Temp.						
	Сусів	Dielectric Strength	No failure	Temp. 1 Temp						
	Humidity	Appearance Capacitance	No marking defects	Sit the capacitor at 40±2°C and 90 to 95% humidity for 500±12						
15	State)	Change	Within ±12.5% *1	hours. Remove and let sit for 48±4 hours at room temperature,						
		D.F.	0.05 max. *1	then measure.						
		I.R.	More than 1,000M Ω or 50 Ω · F (Whichever is smaller)							
		Appearance	No marking defects							
		Capacitance Change	Within ±12.5% *1	Apply the rated voltage at 40±2°C and 90 to 95% humidity for						
16	Humidity	D.F.	0.05 max. *1	500±12 hours. Remove and let sit for 48±4 hours at room						
	Load	I.R.	More than 500M Ω or 25 Ω · F *1 (Whichever is smaller)	temperature, then measure. The charge/discharge current is less than 50mA.						
		Dielectric Strength	No failure							
		Appearance	No marking defects	Apply 200% of the rated voltage for 1000±12 hours at the						
		Capacitance Change	Within ±12.5% *1	maximum operating temperature ±3°C. Let sit for 48±4 hours at room temperature, then measure. The charge/discharge						
17	High 7 Temperature	D.F.	W.V.: 25V min.; 0.04 max. W.V.: 16V max.; 0.05 max. *1	current is less than 50mA. •Initial measurement.						
	Load	I.R.	More than 1,000M Ω or 50 Ω · F *1 (Whichever is smaller)	Apply 200% (*2) of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for						
		Dielectric Strength	No failure	48±4 hours at room temperature. Perform initial measurement. (*1)						

^{*1 :} The ligure Indicates typical inspection.Please refer to individual specifications.

^{*2 :} Some of the parts are applicable in rated voltage×150%. Please refer to individual specifications.

Chip Monolithic Ceramic Capacitors

High Frequency for Flow/Reflow Soldering GQM Series

■ Features

- 1. HiQ and low ESR at VHF, UHF, Microwave
- 2. Feature improvement, low power consumption for mobile telecommunication. (Base station, terminal, etc.)

■ Applications

High frequency circuit (Mobile telecommunication, etc.)

Part Number		Dir	nensions (r	mm)	
Part Number	L	W	T	е	g min.
GQM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5
GQM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7

Part Number	GQM1	8	GQM2		
LxW	1.60x0.	80	2.00x1.:	25	
тс	C0G (5C)		C0G (5C)		
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)	
Capacitance (Capaci	tance part numbering code) an	d T (mm) Dimension (T Dimen	ision part numbering code)		
0.50pF(R50)	0.80(8)		0.85(9)		
0.75pF(R75)	0.80(8)		0.85(9)		
1.0pF(1R0)	0.80(8)		0.85(9)		
1.1pF(1R1)	0.80(8)		0.85(9)		
1.2pF(1R2)	0.80(8)		0.85(9)		
1.3pF(1R3)	0.80(8)		0.85(9)		
1.5pF(1R5)	0.80(8)		0.85(9)		
1.6pF(1R6)	0.80(8)		0.85(9)		
1.8pF(1R8)	0.80(8)		0.85(9)		
2.0pF(2R0)	0.80(8)		0.85(9)		
2.2pF(2R2)	0.80(8)		0.85(9)		
2.4pF(2R4)	0.80(8)		0.85(9)		
2.7pF(2R7)	0.80(8)		0.85(9)		
3.0pF(3R0)	0.80(8)		0.85(9)		
3.3pF(3R3)	0.80(8)		0.85(9)		
3.6pF(3R6)	0.80(8)		0.85(9)		
3.9pF(3R9)	0.80(8)		0.85(9)		
4.0pF(4R0)	0.80(8)		0.85(9)		
4.3pF(4R3)	0.80(8)		0.85(9)		
4.7pF(4R7)	0.80(8)		0.85(9)		
5.0pF(5R0)	0.80(8)		0.85(9)		
5.1pF(5R1)	0.80(8)		0.85(9)		
5.6pF(5R6)	0.80(8)		0.85(9)		
6.0pF(6R0)	0.80(8)		0.85(9)		
6.2pF(6R2)	0.80(8)		0.85(9)		
6.8pF(6R8)	0.80(8)		0.85(9)		
7.0pF(7R0)		0.80(8)	0.85(9)		
7.5pF(7R5)		0.80(8)	0.85(9)		
8.0pF(8R0)		0.80(8)	0.85(9)		
8.2pF(8R2)		0.80(8)	0.85(9)		
9.0pF(9R0)		0.80(8)	0.85(9)		
9.1pF(9R1)		0.80(8)	0.85(9)		
10pF(100)		0.80(8)	0.85(9)		

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

Part Number	GQM18	3	GC	QM21		
LxW	1.60x0.8	30	2.00x1.25 C0G (5C)			
тс	C0G (5C)					
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)		
Capacitance (Capacita	nce part numbering code) an	d T (mm) Dimension (T Dimer	nsion part numbering code)			
11pF(110)		0.80(8)	0.85(9)			
12pF(120)		0.80(8)	0.85(9)			
13pF(130)		0.80(8)	0.85(9)			
15pF(150)		0.80(8)	0.85(9)			
16pF(160)		0.80(8)	0.85(9)			
18pF(180)		0.80(8)	0.85(9)			
20pF(200)		0.80(8)		0.85(9)		
22pF(220)		0.80(8)		0.85(9)		
24pF(240)		0.80(8)		0.85(9)		
27pF(270)		0.80(8)		0.85(9)		
30pF(300)		0.80(8)		0.85(9)		
33pF(330)		0.80(8)		0.85(9)		
36pF(360)		0.80(8)		0.85(9)		
39pF(390)		0.80(8)		0.85(9)		
43pF(430)		0.80(8)		0.85(9)		
47pF(470)		0.80(8)		0.85(9)		
51pF(510)		0.80(8)		0.85(9)		
56pF(560)		0.80(8)		0.85(9)		
62pF(620)		0.80(8)		0.85(9)		
68pF(680)		0.80(8)		0.85(9)		
75pF(750)		0.80(8)		0.85(9)		
82pF(820)		0.80(8)		0.85(9)		
91pF(910)		0.80(8)		0.85(9)		
100pF(101)		0.80(8)		0.85(9)		

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Q-Frequency Characteristics

■ Resonant Frequency-Capacitance

No.	Ite	em	Specifications		Test Met	thod	
1	Operating Temperatu		-55 to 125℃	Reference Temperatu (2C, 3C, 4C : 20℃)	re : 25℃		
2	Rated Vo	ltage	See the previous page.	The rated voltage is do may be applied contin When AC voltage is st whichever is larger, sh voltage range.	uously to the uperimposed	e capacitor. d on DC volta	ge, V ^{p.p} or V ^{o.p} ,
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	n	Within the specified dimensions	Using calipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be o is applied between the provided the charge/di	termination	s for 1 to 5 se	econds,
6	Insulation	Resistance	More than $10,000M\Omega$ (Whichever is smaller)	The insulation resistar voltage not exceeding max. and within 2 min	the rated vo	oltage at 25℃	
7	Capacita	nce	Within the specified tolerance	The capacitance/Q sh	ould be mea	sured at 25℃	at the
			30pF min. : Q≧1400	frequency and voltage	shown in th	e table.	
8	Q		30pF max. : Q≥800+20C	Frequency		1±0.1MHz	
J	2		C. Naminal Canacitanas (nF)	Voltage		0.5 to 5Vrm	S
		I	C : Nominal Capacitance (pF)				
		Capacitance	Within the specified tolerance (Table A)	The temperature coeff		-	the capacitance
		Change		measured in step 3 as When cycling the temp			step 1 through 5
		Temperature Coefficient	Within the specified tolerance (Table A)	the capacitance should	d be within th	ne specified to	lerance for the
9	Capacitance Temperature			temperature coefficient The capacitance drift in between the maximum steps 1, 3 and 5 by the	s calculated and minimi capacitance	by dividing thum measured to the value in ste	e differences values in the p 3.
	Characteristics	Canacitance	Within ±0.29/ or ±0.05nE	Step		emperature (°	,
		Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)	1 2	Refe	erence Temp.	±2
			(·····································	3	Pofe	-55±3	+2
				4	Keie	erence Temp. 125±3	<u> </u>
				5	Refe	erence Temp.	+2
					TOIC	orenee remp.	
			No removal of the terminations or other defect should occur.	Solder the capacitor to Fig. 1 using a eutectic swith the test jig for 10± The soldering should b reflow method and sho soldering is uniform and	solder. Then 1 sec. e done eithe uld be condu	apply 10N* fo er with an iron ucted with care	or using the e so that the eat shock.
10	Adhesive of Termin	Strength					*5N (GQM188)
	2			Type	a	b	С
			<u> </u>	GQM18	1.0	3.0	1.2
			Solder resist	GQM21	1.2	4.0	1.65 (in mm)
			Baked electrode or copper foil		Fig. 1	1	(1111111)
		Appearance	No defects or abnormalities	Solder the capacitor to	the test jig	(glass epoxy	board) in the
		Capacitance	Within the specified tolerance	same manner and und			` '
11	Vibration Resistance	Q	30pF min. : Q≥1400 30pF max. : Q≥800+20C	The capacitor should lead to the having a total amplitude uniformly between the frequency range, from the traversed in approximation.	le of 1.5mm approximate 10 to 55Hz timately 1 m	, the frequence e limits of 10 and return to inute.	ey being varied and 55Hz. The 10Hz, should
			C : Nominal Capacitance (pF)	This motion should be 3 mutually perpendicu		•	

Continued from the preceding page

	Continued fr	om the prec	eding page.					
No.	Ite	em	Specifications	Test Method				
12	12 Deflection		No crack or marked defect should occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Flexure: ≤1 Capacitance meter 45 Fig. 3				
13	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5℃ or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5℃.				
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects					
		Capacitance Within ±2.5% or ±0.25 pF Change (Whichever is larger)		Prohoat the canacitor at 120 to 150% for 4 minute Immerse the				
14	Resistance to Soldering Heat	Q	30pF min. : Q≥1400 30pF max. : Q≥800+20C	Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.				
			C : Nominal Capacitance (pF)					
		I.R.	More than 10,000MΩ					
		Dielectric Strength	No failure					
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10).				
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Perform the five cycles according to the four heat treatments listed in the following table.				
15	Temperature Cycle		30pF min. : Q≥1400 30pF max. : Q≥800+20C	Let sit for 24±2 hours at room temperature, then measure. Step 1 2 3 4				
	.,	Q		Temp (%) Min. Operating Room Max. Operating Room				
		I.R.	C : Nominal Capacitance (pF) More than 10,000MΩ	Time (min.) 30±3 2 to 3 30±3 2 to 3				
		Dielectric Strength	No failure					
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects					
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)					
16	Humidity Steady State	Q	30pF min. : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF max. : Q≥200+10C	Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure.				
		I.D.	C : Nominal Capacitance (pF)					
		I.R. Dielectric	More than $1,000 M\Omega$	-				
		Strength	No failure					

Continued from the preceding page.

No.	lt∈	em	Specifications	Test Method			
			The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects				
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2°C and 90 to 95% humidity for			
17	Humidity Load	Q	30pF min. : Q≥200 30pF max. : Q≥100+10C/3	500±12 hours. Remove and let sit for 24±2 hours at room temperature then measure. The charge/discharge current is less than 50mA.			
			C : Nominal Capacitance (pF)				
		I.R.	More than $500M\Omega$				
		Dielectric Strength	No failure				
			The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects				
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the			
18	High Temperature Load	Q	30pF min. : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF max. : Q≥200+10C C : Nominal Capacitance (pF)	maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.			
		I.R.	1 4 7	_			
			More than 1,000M Ω				
		Dielectric Strength	No failure				

Table A

		Capacitance Change from 25℃ (%)						
Char.	Nominal Values (ppm/°C) *1	-5	_55°C30°C		30℃ —10℃		0℃	
	(ρρπ, ε) - τ	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

^{*1 :} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

Chip Monolithic Ceramic Capacitors

High Frequency Type ERB Series

SMD Type

■ Features (ERB Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies
- 2. Nickel barriered terminations of ERB series improve solderability and decrease solder leaching.
- 3. ERB18/21 series are designed for both flow and reflow soldering and ERB32 series are designed for reflow soldering.

Part Number	Dimensions (mm)								
Fait Number	L	W	T max.	e min.	g min.				
ERB188	1.6±0.1	0.8±0.1	0.9	0.2	0.5				
ERB21B	2.0±0.3	1.25±0.3	1.35	0.25	0.7				
ERB32Q	3.2±0.3	2.5±0.3	1.7	0.3	1.0				

Applications

High frequency and high-power circuits

Part Number	ERB18		ERB21				ERB32			
_ x W	1.6x0.8		2.0x1.25			3.2x2.5				
тс	C0G (5C)		C0G (5C)				C0G (5C)			
Rated Volt.	250 (2E)	250 (2E)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	250 (2E)	100 (2A)	50 (1H)	
Capacitance (Ca	pacitance part	numbering co	de) and T (mm)) Dimension (1	Dimension par	t numbering o	ode)			
0.50pF(R50)	0.8(8)	1.25(B)			1.50(Q)					
0.75pF(R75)	0.8(8)	1.25(B)			1.50(Q)					
1.0pF(1R0)	0.8(8)	1.25(B)			1.50(Q)					
1.1pF(1R1)	0.8(8)	1.25(B)			1.50(Q)					
1.2pF(1R2)	0.8(8)	1.25(B)			1.50(Q)					
1.3pF(1R3)	0.8(8)	1.25(B)			1.50(Q)					
1.5pF(1R5)	0.8(8)	1.25(B)			1.50(Q)					
1.6pF(1R6)	0.8(8)	1.25(B)			1.50(Q)					
1.8pF(1R8)	0.8(8)	1.25(B)			1.50(Q)					
2.0pF(2R0)	0.8(8)	1.25(B)			1.50(Q)					
2.2pF(2R2)	0.8(8)	1.25(B)			1.50(Q)					
2.4pF(2R4)	0.8(8)	1.25(B)			1.50(Q)					
2.7pF(2R7)	0.8(8)	1.25(B)			1.50(Q)					
3.0pF(3R0)	0.8(8)	1.25(B)			1.50(Q)					
3.3pF(3R3)	0.8(8)	1.25(B)			1.50(Q)					
3.6pF(3R6)	0.8(8)	1.25(B)			1.50(Q)					
3.9pF(3R9)	0.8(8)	1.25(B)			1.50(Q)					
4.3pF(4R3)	0.8(8)	1.25(B)			1.50(Q)					
4.7pF(4R7)	0.8(8)	1.25(B)			1.50(Q)					
5.1pF(5R1)	0.8(8)	1.25(B)			1.50(Q)					
5.6pF(5R6)	0.8(8)	1.25(B)			1.50(Q)					
6.2pF(6R2)	0.8(8)	1.25(B)			1.50(Q)					
6.8pF(6R8)	0.8(8)	1.25(B)			1.50(Q)					
7.5pF(7R5)	0.8(8)	1.25(B)			1.50(Q)					
8.2pF(8R2)	0.8(8)	1.25(B)			1.50(Q)					
9.1pF(9R1)	0.8(8)	1.25(B)			1.50(Q)					
10pF(100)	0.8(8)	1.25(B)			1.50(Q)					
11pF(110)	0.8(8)	1.25(B)			1.50(Q)					
12pF(120)	0.8(8)	1.25(B)			1.50(Q)					
13pF(130)	0.8(8)	1.25(B)			1.50(Q)					

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

Continued from the preceding pag	e.
----------------------------------	----

Part Number	ERB18		ERB21				ERB32		
LxW	1.6x0.8		2.0x1.25				3.2x2.5		
тс	C0G (5C)		C0G (5C)				C0G (5C)		
Rated Volt.	250 (2E)	250 (2E)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	250 (2E)	100 (2A)	50 (1H)
Capacitance (Cap	pacitance par	t numbering co	de) and T (mm	n) Dimension (T	Dimension par	rt numbering o	ode)	•	
15pF(150)	0.8(8)	1.25(B)			1.50(Q)				
16pF(160)	0.8(8)	1.25(B)			1.50(Q)				
18pF(180)	0.8(8)	1.25(B)			1.50(Q)				
20pF(200)	0.8(8)	1.25(B)			1.50(Q)				
22pF(220)	0.8(8)	1.25(B)			1.50(Q)				
24pF(240)	0.8(8)	1.25(B)			1.50(Q)				
27pF(270)	0.8(8)	1.25(B)			1.50(Q)				
30pF(300)	0.8(8)	1.25(B)			1.50(Q)				
33pF(330)	0.8(8)	1.25(B)			1.50(Q)				
36pF(360)	0.8(8)	1.25(B)			1.50(Q)				
39pF(390)	0.8(8)	1.25(B)			1.50(Q)				
43pF(430)	0.8(8)	1.25(B)			1.50(Q)				
47pF(470)	0.8(8)	1.25(B)			1.50(Q)				
51pF(510)	0.8(8)	1.25(B)			1.50(Q)				
56pF(560)	0.8(8)	1.25(B)			1.50(Q)				
62pF(620)	0.8(8)	1.25(B)			1.50(Q)				
68pF(680)	0.8(8)	1.25(B)			1.50(Q)				
-									
75pF(750)	0.8(8)	1.25(B)			1.50(Q)				
82pF(820)	0.8(8)	1.25(B)			1.50(Q)				
91pF(910)	0.8(8)	1.25(B)			1.50(Q)				
100pF(101)	0.8(8)	1.25(B)	1.05(=)		1.50(Q)				
120pF(121)			1.25(B)		1.50(Q)	4.50(\$)			
130pF(131)			1.25(B)			1.50(Q)			
150pF(151)				1.25 (B)		1.50(Q)			
160pF(161)				1.25 (B)			1.50(Q)		
180pF(181)							1.50(Q)		
200pF(201)							1.50(Q)		
220pF(221)							1.50(Q)		
240pF(241)								1.50(Q)	
270pF(271)								1.50(Q)	
300pF(301)								1.50(Q)	
330pF(331)								1.50(Q)	
360pF(361)								1.50(Q)	
390pF(391)								1.50(Q)	
430pF(431)								1.50(Q)	
470pF(471)								1.50(Q)	
510pF(511)									1.50(Q)
560pF(561)									1.50(Q)
620pF(621)									1.50(Q)
680pF(681)									1.50(Q)
750pF(751)									1.50(Q)
									1.50(Q)
820pF(821)									
820pF(821) 910pF(911)									1.50(Q)

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Ite	em	Specifications		Test Met	hod			
1	Operating Temperati		-55 to +125℃	Reference Temperature: 25°C					
2			See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{o-p} , whichever is larger, should be maintained within the rated voltage range.			je, V ^{P-P} or V ^{O-P} ,		
3	Appearar	nce	No defects or abnormalities	Visual inspection					
4	Dimensio	ns	Within the specified dimension	Using calipers					
5	Dielectric	: Strength	No defects or abnormalities	No failure should be age is applied betwee provided the charge/(*) 300V: 250%, 500V	en the termina discharge curi	tions for 1 to	5 seconds,		
6	Insulation (I.R.)	Resistance	1,000,000MΩ min. (C≥470pF) 100,000MΩ min. (C>470pF)	The insulation resistance should be measured with a voltage not exceeding the rated voltage at 25°C and s humidity and within 2 minutes of charging.					
7	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at 25℃ at t		at the			
8	·		C≦ 220pF: Q≧10,000 220pF <c≦ 470pf:="" 5,000<br="" q≥="">470pF<c≦1,000pf: 3,000<br="" q≥="">C: Nominal Capacitance (pF)</c≦1,000pf:></c≦>	. 3		e table. 1±0.1MHz 1±0.2Vrms			
	Capacitance Change Temperature Coefficent Capacitance Temperature Characteristics Capacitance Temperature Characteristics Capacitance Drift Capacitance Drift Within the specified tolerance (Table A-6) Within the specified tolerance (Table A-6) Within the specified tolerance (Table A-6)		Within the specified tolerance (Table A-6)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When					
					Within the specified tolerance (Table A-6)	the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A.			ance for the
9			The capacitance drift between the maximu 1, 3 and 5 by the cap Step 1 2 3 4 5 5	is calculated m and minimu acitance value	by dividing the im measured	e differences values in steps			
			No removal of the terminations or other defects should occur.	Solder the capacitor	on the test jig	(glass epoxy	board) shown		
10	Adhesive Strength of Termination		Solder Resist Baked Electrode or Copper Foil	in Fig. 1 using an eut Then apply 10N* forc The soldering should reflow method and sh soldering is uniform a Type ERB18 ERB21 ERB32	ectic solder. e in parallel w be done eithe nould be cond	with the test jiger with an iron ucted with car ects such as b 3.0 4.0 5.0	for 10±1sec. or using the re so that the		

Continued from the preceding page

No.	Ite	m	Specifications	Test Method			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the			
		Capacitance	Within the specified tolerance	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion			
11	Vibration Resistance $Q \qquad \begin{array}{c} \text{Satisfies the initial value.} \\ C \leq 220 \text{pF}: Q \geq 10,000 \\ 220 \text{pF} < C \leq 470 \text{pF}: Q \geq 5,000 \\ 470 \text{pF} < C \leq 1,000 \text{pF}: Q \geq 3,000 \\ C: \text{Nominal Capacitance (pF)} \end{array}$		C≦ 220pF : Q≥10,000 220pF <c≦ 470pf="" 5,000<br="" :="" q≥="">470pF<c≦1,000pf 3,000<="" :="" q≥="" td=""><td colspan="3">having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).</td></c≦1,000pf></c≦>	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).			
12	12 Deflection		No crack or marked defect should occur. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize 24.5	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2a using an eutectic solder. Then apply a force in the direction shown in Fig. 3a. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
			Flexure : ≤1	Type a b c			
				ERB18 1.0 3.0 1.2 ERB21 1.2 4.0 1.65			
			Capacitance meter	ERB32 2.2 5.0 2.9			
			+ +3 + + +3 + t : 1.6mm Fig. 2a Fig. 2a	(in mm)			

Solderability of 95% of the terminations are to be soldered evenly and Termination continuously.

Immerse the capacitor in a solution of isopropyl alcohol and rosin (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in an eutectic solder or Sn-3.0Ag-0.5Cu solder solution for 5±0.5 seconds at 245±5℃.

Item Specifications No marked defect Appearance Within ±2.5% or ±0.25pF Capacitance Resistance Change (Whichever is larger) to Soldering Heat C≦ 220pF : Q≥10,0 220pF<C≤ 470pF: Q≥ 5,0 Ω 470pF<C≦1,000pF : Q≥ 3,0 Dielectric Strength No failure

specifications in the following table.

Preheat according to the conditions listed in the table below. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5Cu lder solution at 270±5°C for 10±0.5 seconds. Let sit at room perature for 24±2 hours.

	SOIC
	tem
000	2
000	_
000	-

Chip Size Preheat Condition 2.0×1.25mm max. 1minute at 120 to 150℃ 3.2×2.5mm Each 1 minute at 100 to 120℃ and then 170 to 200℃

The measured and observed characteristics should satisfy the specifications in the following table.

The measured and observed characteristics should satisfy the

Item	Specifications	
Appearance	No marked defect	
Capacitance	Within ±5% or ±0.5pF	
Change	(Whichever is larger)	
	C≥30pF : Q≥350	
Q	10pF≦C<30pF : Q≥275+ 5 C	
	C<10pF : Q≥200+10C	
I.R.	1,000MΩ min.	
Dielectric Strength	No failure	

Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.

Step	1	2	3	4
Temp. (℃)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.
Time (min.)	30±3	5 max.	30±3	5 max.

C: Nominal Capacitance (pF)

C: Nominal Capacitance (pF)

The measured and observed characteristics should satisfy the

pecifications in the following table.				
Item	Specifications			
Appearance	No marked defect			
Capacitance	Within ±5% or ±0.5pF			
Change	(Whichever is larger)			
	C≧30pF : Q≧350			
Q	10pF≦C<30pF : Q≥275+ 5 C			
	C<10pF : Q≥200+10C			
I.R.	1,000MΩ min.			
	C : Nominal Capacitance (pF			

Apply the 24-hour heat (-10 to +65°C) and humidity (80 to 100%) treatment shown below, 10 consecutive times. Remove, let sit for 24±2 hours at room temperature, and measure

Continued on the following page.

Temperature Cycle

Humidity

Continued from the preceding page.

No.	Item	5	pecifications	Test Method	
		The measured and obse specifications in the follow	rved characteristics should satisfy the ving table.		
17	High Temperature Load	Item Appearance Capacitance Change Q I.R. Dielectric Strength	Specifications No marked defect Within ±3% or ±0.3pF (Whichever is larger) C≥30pF: Q≥350 10pF≤C<30pF: Q≥275+ ½ C C<10pF: Q≥200+10C 1,000MΩ min. No failure C: Nominal Capacitance (pF)	Apply 200% (500V only 150%) of the rated voltage for 1,000± hours at 125±3°C. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.	

Table A-6

	Name at Makes	Capacitance Change from 25℃ (%)						
Char.	Nominal Values (ppm/℃) Note 1	- 55		-30		-10		
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125℃ (for 5C)

ERB Series Data

■ Q-Frequency Characteristics

ERB Series

■ Impedance-Frequency Characteristics

ERB Series

■ ESR-Frequency Characteristics

ERB Series

■ Resonant Frequency-Capacitance

ERB Series

■ Allowable Voltage-Frequency

■ Allowable Current-Frequency

ERB Series Data

Continued from the preceding page.

■ Allowable Apparent Power-Frequency

■ Allowable Effective Power-Frequency

■ Packaging Code

<u> </u>					
Backaging Type	Tana Carrior Dackaging	Bulk Casa Backaging	Bulk Packaging		
Packaging Type	Tape Carrier Packaging	Bulk Case Packaging	Bulk Packaging in a Bag	Bulk Packaging in a Tray	
Packaging Code	D, L, K, J	С	В	Т	

■ Minimum Quantity Guide

		Dimensions (mm)						ty (pcs.)		
Part Number GRM02					ø180mm reel ø330mm reel		nm reel	Bulk Case	Dully Day	
		L	W	Т	Paper Tape	Embossed Tape	Paper Tape	Embossed Tape	Duik Case	Bulk Bag
Iltra Miniaturized		0.4	0.2	0.2	20,000	-	-	-	-	-
itra iviiriiatarizea	GRM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
	GRM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000	1,000
	GRM21			0.6	4,000	-	10,000	-	10,000	1,000
		2.0	1.25	0.85/1.0	4,000	-	10,000	-	-	1,000
or Flow/Reflow				1.25	-	3,000	-	10,000	5,000 2)	1,000
				0.6/0.85	4,000	-	10,000	-	-	1,000
		3.2	1.6	1.15	-	3,000	-	10,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
	GRM15X	1.0	0.5	0.25	10,000	-	50,000	-	-	1,000
	GRM155	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
				0.85	-	4,000	-	10,000	-	1,000
				1.15	-	3,000	-	10,000	-	1,000
	GRM32	3.2	2.5	1.35	-	2,000	-	8,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
				1.8/2.0 2.5	-	1,000	-	4,000	-	1,000
				1.15	-	1,000	-	5,000	-	1,000
For Reflow	GRM43	4.5	3.2	1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
	GINNAS	4.5	3.2	2.5	-	500	-	2,000	-	1,000
				2.8	-	500	-	1,500	-	1,000
	GRM55 5.7			1.15	-	1,000	-	5,000	-	1,000
		5.7	5.0	1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
		5.7	5.7 5.0	2.5	-	500	•	2,000	-	500
				3.2	-	300	ı	1,500	-	500
High Dawer Tune	GJM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
igh Power Type	GJM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GQM18	1.6	0.8	0.8	4,000	-	10,000	-	-	1,000
	GQM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
igh Frequency	ERB18	1.6	0.8	0.9 max.	4,000	-	10,000	-	-	1,000
	ERB21	2.0	1.25	1.35 max.	-	3,000	-	10,000	-	1,000
	ERB32	3.2	2.5	1.7 max.	-	2,000	ı	8,000	-	1,000
For Ultrasonic	GRM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
Micro Chip	GMA05	0.5	0.5	0.35	-	-	•	-	-	400 1)
Micro Chip	GMA08	0.8	0.8	0.5	-	-	ı	-	-	400 1)
	GNM1M	1.37	1.0	0.6	4,000	-	10,000	-	-	1,000
Array	GNM31	3.2	1.6	0.8	4,000	-	10,000	-	-	1,000
Allay	CITIVIST	3.2	1.0	1.0	-	3,000	-	10,000	-	1,000
	GNM21	2.0	1.25	0.6/0.85	4,000	-	10,000	-	-	1,000
	LLL18	0.8	1.6	0.5	-	4,000	-	10,000	-	1,000
	LLL21	1.25	2.0	0.5/0.6	-	4,000	-	10,000	-	1,000
	LLL4 I	1.20	2.0	0.85	-	3,000	-	10,000	-	1,000
	LLL31	1.6	3 2	0.5/0.7	-	4,000	-	10,000	-	1,000
	LLLJI	1.6	3.2	1.15	-	3,000	-	10,000	-	1,000
	LLA18	1.6	0.8	0.5	-	4,000	-	10,000	-	1,000
	11 424	2.0	1.05	0.5	-	4,000	-	10,000	-	1,000
Low ESL	LLA21	2.0	1.25	0.85	-	3,000	-	10,000	-	1,000
				0.5	-	4,000	-	10,000	-	1,000
	LLA31	3.2	3.2 1.6	0.85	-	3,000	-	10,000	-	1,000
				1.15	-	3,000	-	10,000	-	1,000
	LI MO4	0.0	4.05	0.5	-	4,000	-	10,000	-	1,000
	LLM21	2.0	1.25	0.85	-	3,000	-	10,000	-	1,000
				0.5	-	4,000	-	10,000	-	1,000
	LLM31	3.2	1.6	1.15	_	3,000	-	10,000	-	1,000

²⁾ $10\mu F,\, 1.0\mu F,\, 3.3/4.7\mu F$ of 6.3V R6 rated are not available by bulk case.

Continued from the preceding page.

■ Tape Carrier Packaging

(1) Dimensions of Reel

(2) Dimensions of Paper Tape

8mm width 4mm pitch Tape

Part Number	A*	B*
GRM02	0.25	0.45
GJM03 GRM03	0.37	0.67
GJM15 GRM15	0.65	1.15

*Nominal Value

(in mm)

Continued from the preceding page.

(3) Dimensions of Embossed Tape

Part Number	Α	В
LLL18, LLA18	1.05±0.1	1.85±0.1
GRM21, ERB21 (T≧1.0mm) LLL21 LLA21, LLM21	1.45±0.2	2.25±0.2
GRM31 (T≥1.15mm) LLL31 LLA31, LLM31 GNM31 (T≥1.0mm)	1.9±0.2	3.5±0.2
GRM32, ERB32 (T≧1.15mm)	2.8±0.2	3.5±0.2

*Nominal Value

Part Number Α* В* 3.6 4.9 GRM43 GRM55 5.2 6.1

12mm width 8mm pitch Tape

4.0+0.1

2.0±0.1

Direction of feed

φ1.5^{+0.1}

. 1.75+0.1

5±0.

2.5 max

for GRM43/55

(3.7 max. for T=2.5mm)

(4.7 max. for T≥3.0mm)

*Nominal Value

(in mm)

(4) Taping Method

- ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2 Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
- 3 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- 5 The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- 6 Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
- 7 Peeling off force: 0.1 to 0.6N* in the direction shown below. GRM03 : 0.05 to 0.5N

Continued from the preceding page.

■ Dimensions of Bulk Case Packaging The bulk case uses antistatic materials. Please contact Murata for details.

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

⚠Caution

■ Storage and Operating Conditions

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases. Storage environment must be at an ambient temperature of 5-40 degree C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

1. Inspection

Thrusting force of the test probe can flex the PCB. resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

- 2. Board Separation (or depanalization)
 - (1) Board flexing at the time of separation causes cracked chips or broken solder.
 - (2) Severity of stresses imposed on the chip at the time of board break is in the order of: Pushback<Slitter<V Slot<Perforator.
- (3) Board separation must be performed using special jigs, not with hands.

3. Reel and bulk case

In the handling of reel and case, please be careful and do not drop it.

Do not use chips from a case which has been dropped.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCTS IS USED.

■ Soldering and Mounting

1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

[Component Direction]

Locate chip horizontal to the direction in which stress acts

[Chip Mounting Close to Board Separation Point]

Perforation

Chip arrangement Worst A-C-(B~D) Best

(Reference Data 2. Board bending strength for solder fillet height) (Reference Data 3. Temperature cycling for solder fillet height) (Reference Data 4. Board bending strength for board material)

2. Solder Paste Printing

- Overly thick application of solder paste results in excessive fillet height solder.
 This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked
- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

3. Chip Placing

chips.

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. (Reference Data 5. Break strength)

⚠Caution

Continued from the preceding page.

4. Reflow Soldering

- Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips. So when preheating, keep temperature differential, ΔT , within the range shown in Table 1. The smaller the ΔT , the less stress on the chip.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the above table.

Table 1

Part Number	Temperature Differential
GRM02/03/15/18/21/31	
GJM03/15	
LLL18/21/31	ΔΤ≦190℃
ERB18/21	
GQM18/21	
GRM32/43/55	
LLA18/21/31	
LLM21/31	ΔΤ≦130℃
GNM	
ERB32	

Recommended Conditions

	Pb-Sn S	Solder	Lead Free Solder
	Infrared Reflow	Lead Free Solder	
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

5. Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

⚠Caution

Continued from the preceding page.

6. Flow Soldering

- Sudden heating of the chip results in thermal distortion causing cracked chips. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- When preheating, keep the temperature differential between solder temperature and chip surface temperature, ΔT , within the range shown in Table 2. The smaller the ΔT , the less stress on the chip. When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

Table 2

Part Number	Temperature Differential
GRM18/21/31	
LLL21/31	ΔT≦150°C
ERB18/21	Δ1≦150 C
GQM18/21	

Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N ₂

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu

Optimum Solder Amount for Flow Soldering

⚠Caution

Continued from the preceding page.

7. Correction with a Soldering Iron

(1) For Chip Type Capacitors

 Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential, ΔT , within the range shown in Table 3. The smaller the ΔT , the less stress on the chip.

Table 3

Part Number	Temperature Differential	Peak Temperature	Atmosphere
GRM15/18/21/31 GJM15 LLL18/21/31 GQM18/21 ERB18/21	ΔT≦190℃	300°C max. 3 seconds max. / termination	Air
GRM32/43/55 GNM LLA18/21/31 LLM21/31 ERB32	ΔΤ≦130℃	270°C max. 3 seconds max. / termination	Air

*Applicable for both Pb-Sn and Lead Free Solder.

Ph-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

[Standard Conditions for Soldering Iron Temperature]

Preheating

60-120 seconds

Soldering

Gradual Cooling

Time

6 seconds max.

Temperature (°C)

Peak Temperature

170°C 150°C

(2) For Microstrip Types

- Solder 1mm away from the ribbon terminal base, being careful that the solder tip does not directly contact the capacitor. Preheating is unnecessary.
- Complete soldering within 3 seconds with a soldering tip less than 270°C in temperature.

8. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

■ Rating

Die Bonding/Wire Bonding (GMA Series)

- 1. Die Bonding of Capacitors
- •Use the following materials Braze alloy: Au-Sn (80/20) 300 to 320 degree C in N2 atmosphere
- (1) Control the temperature of the substrate so that it matches the temperature of the braze
- (2) Place braze alloy on substrate and place the capacitor on the alloy. Hold the capacitor and gently apply the load. Be sure to complete the operation in 1 minute.

- 2. Wire Bonding
- •Wire

Gold wire:

20 micro m (0.0008 inch), 25 micro m (0.001 inch) diameter

- Bonding
- (1) Thermocompression, ultrasonic ball bonding.
- (2) Required stage temperature: 200 to 250 degree C
- (3) Required wedge or capillary weight: 0.5N to 2N.
- (4) Bond the capacitor and base substrate or other devices with gold wire.

■ Soldering and Mounting

1. PCB Design

(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

Pattern Forms

	Placing Close to Chassis	Placing of Chip Components and Leaded Components	Placing of Leaded Components after Chip Component	Lateral Mounting
Incorrect	Chassis Solder (ground) Electrode Pattern	Lead Wire	Soldering Iron Lead Wire	
Correct	Solder Resist	Solder Resist	Solder Resist	Solder Resist

Continued from the preceding page.

(2) Land Dimensions

Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (LXW)	a	b	С
GRM18 GQM18	1.6×0.8	0.6—1.0	0.8-0.9	0.6-0.8
GRM21 GQM21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
GRM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4
LLL21	1.25×2.0	0.4-0.7	0.5-0.7	1.4-1.8
LLL31	1.6×3.2	0.6-1.0	0.8-0.9	2.6-2.8
ERB18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
ERB21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1

(in mm)

Table 2 Reflow Soldering Method

Dimensions Part Number	Dimensions (L×W)	a	b	С
GRM02	0.4×0.2	0.16-0.2	0.12-0.18	0.2-0.23
GRM03 GJM03	0.6×0.3	0.2-0.3	0.2-0.35	0.2-0.4
GRM15 GJM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4-0.6
GRM18 GQM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8
GRM21 GQM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1
GRM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4
GRM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3
GRM43	4.5×3.2	3.0-3.5	1.2-1.4	2.3-3.0
GRM55	5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8
LLL18	0.8×1.6	0.2-0.4	0.3-0.4	1.0-1.4
LLL21	1.25×2.0	0.4-0.6	0.3-0.5	1.4-1.8
LLL31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8
ERB18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8
ERB21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1
ERB32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3

(in mm)

Continued from the preceding page.

GNM, LLA Series for reflow soldering method

Table 3 GNM, LLA Series for Reflow Soldering Land Dimensions

Part Number	Dimensions (mm)						
r dit ivuilibei	L	W	a	b	С	р	
GNM1M2	1.37	1.0	0.45 to 0.5	0.5 to 0.55	0.3 to 0.35	0.64±0.1	
GNM212	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.4 to 0.5	1.0±0.1	
GNM214	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.25 to 0.35	0.5±0.05	
GNM314	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8±0.05	
LLA18	1.6	0.8	0.45 to 0.55	0.25 to 0.35	0.15 to 0.25	0.4	
LLA21	2.0	1.25	0.7 to 0.8	0.4 to 0.6	0.2 to 0.3	0.5	
LLA31	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8	

LLM Series for reflow soldering method

Table 4 LLM Series for Reflow Soldering Land Dimensions

Part Number	Dimensions (mm)						
	а	b, b'	c, c'	d	е	f	р
LLM21	0.6 to 0.8	(0.3 to 0.5)	0.3	2.0 to 2.6	1.3 to 1.8	1.4 to 1.6	0.5
LLM31	1.0	(0.3 to 0.5)	0.4	3.2 to 3.6	1.6 to 2.0	2.6	0.8

b=(c-e)/2, b'=(d-f)/2

2. Adhesive Application

- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension c shown in the drawing below to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration.
- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000Pa ·s (500ps) min. (at 25°C)

Adhesive Coverage*

Adhesive Coverage*
0.05mg min.
0.1mg min.
0.15mg min.

*Nominal Value

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

Notice

Continued from the preceding page.

3. Adhesive Curing

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

4. Flux Application

- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently

cleaned. Use flux with a halide content of 0.2wt% max. But do not use strong acidic flux.

Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

5. Flow Soldering

 Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

(Reference Data 6. Thermal shock) (Reference Data 7. Solder heat resistance)

■ Others

1. Resin Coating

When selecting resin materials, select those with low contraction.

2. Circuit Design

These capacitors on this catalog are not safety recognized products

3. Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data here in are given in typical values, not guaranteed ratings.

1. Solderability

(1) Test Method

Subject the chip capacitor to the following conditions. Then apply flux (a ethanol solution of 25% rosin) to the chip and dip it in 230℃ eutectic solder for 2 seconds. Conditions:

Expose prepared at room temperature (for 6 months and 12 months, respectively)

Prepared at high temperature (for 100 hours at 85°C) Prepared left at high humidity (for 100 hours under 90%RH to 95%RH at 40℃)

(2) Test Samples

GRM21: Products for flow/reflow soldering.

(3) Acceptance Criteria

With a 60-power optical microscope, measure the surface area of the outer electrode that is covered with solder.

(4) Results

Refer to Table 1.

Table 1

Sample	Initial State	Prepared at Room Temperature		Prepared at High Temperature for	Prepared at High Humidity for 100 Hours at 90 to	
Sample	IIIIIai State	6 months	12 months	100 Hours at 85℃	95% RH and 40℃	
GRM21 for flow/reflow soldering	95 to 100%	95 to 100%	95%	90 to 95%	95%	

2. Board Bending Strength for Solder Fillet Height

(1) Test Method

Solder the chip capacitor to the test PCB with the amount of solder paste necessary to achieve the fillet heights. Then bend the PCB using the method illustrated and measure capacitance.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 2.

Table 2

Characteristics	Change in Capacitance
5C	Within ±5% or ±0.5pF, whichever is greater
R7	Within ±12.5%
F5	Within ±20%

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Reference Data

Continued from the preceding page.

(4) Results

3. Temperature Cycling for Solder Fillet Height

(1) Test Method

Solder the chips to the substrate various test fixtures using sufficient amounts of solder to achieve the required fillet height. Then subject the fixtures to the cycle illustrated below 200 times.

(1) Solder Amount

Alumina substrates are typically designed for reflow soldering.

Glass epoxy or paper phenol substrates are typically used for flow soldering.

② Material

Alumina (Thickness: 0.64mm) Glass epoxy (Thickness: 1.64mm) Paper phenol (Thickness: 1.64mm)

(3) Land Dimension

Continued from the preceding page.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products are determined to be defective if the change in capacitance has exceeded the values specified in Table 3.

Table 3

Characteristics	Change in Capacitance				
5C Within ±2.5% or ±0.25pF, whichever is gre					
R7	Within ±7.5%				
F5	Within ±20%				

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Reference Data

Continued from the preceding page.

4. Board Bending Strength for Board Material

(1) Test Method

Solder the chip to the test board. Then bend the board using the method illustrated below, to measure capacitance.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm typical

(3) Acceptance Criteria

Products should be determined to be defective if the change in capacitance has exceeded the values specified in Table 4.

Table 4

Characteristics	Change in Capacitance				
5C Within ±5% or ±0.5pF, whichever is greater					
R7	Within ±12.5%				
F5	Within ±20%				

(4) Results

Continued from the preceding page.

5. Break Strength

(1) Test Method

Place the chip on a steel plate as illustrated on the right. Increase load applied to a point near the center of the test sample.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics GRM31 5C/R7/F5 Characteristics

(3) Acceptance Criteria

Define the load that has caused the chip to break or crack, as the bending force.

(4) Explanation

Break strength, P, is proportionate to the square of the thickness of the ceramic element and is expressed as a curve of secondary degree.

The formula is:

$$P = \frac{2\gamma WT^2}{3L} \quad (N)$$

W: Width of ceramic element (mm) T: Thickness of element (mm) L: Distance between fulcrums (mm) γ: Bending stress (N/mm²)

(5) Results

6. Thermal Shock

(1) Test method

After applying flux (an ethanol solution of 25% rosin), dip the chip in a solder bath (6×4 eutectic solder) in accordance with the following conditions:

(2) Test samples

GRM21 5C/R7/F5 Characteristics T=0.6mm typical

(3) Acceptance criteria

Visually inspect the test sample with a 60-power optical microscope. Chips exhibiting breaks or cracks shall be determined to be defective.

Continued from the preceding page.

(4) Results

7. Solder Heat Resistance

(1) Test Method

1) Reflow soldering:

Apply about 300 µm of solder paste over the alumina substrate. After reflow soldering, remove the chip and check for leaching that may have occurred on the outer electrode.

2 Flow soldering:

After dipping the test sample with a pair of tweezers in wave solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

(2) Test samples

GRM21: For flow/reflow soldering T=0.6mm

(3) Acceptance criteria

The starting time of leaching should be defined as the time when the outer electrode has lost 25% of the total edge length of A-B-C-D as illustrated:

3 Dip soldering:

After dipping the test sample with a pair of tweezers in static solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

4 Flux to be used: An ethanol solution of 25% rosin.

(4) Results

Continued from the preceding page.

8. Thermal Shock when Making Corrections with a Soldering Iron

(1) Test Method

Apply a soldering iron meeting the conditions below to the soldered joint of a chip that has been soldered to a paper phenol board, while supplying wire solder. (Note: the soldering iron tip should not directly touch the ceramic element of the chip.)

(2) Test Samples GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria for Defects Observe the appearance of the test sample with a 60-power optical microscope. Those units displaying any breaks or cracks are determined to be defective.

(4) Results

Chip Monolithic Ceramic Capacitors

Medium Voltage Low Dissipation Factor

■ Features

- 1. Murata's original internal electrode structure realizes high flash-over voltage.
- 2. A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realize good solderability.
- 4. Use the GRM21/31 type with flow or reflow soldering, and other types with reflow soldering only.
- 5. Low-loss and suitable for high frequency circuits

Applications

- 1. Ideal for use on high frequency pulse circuits such as snubber circuits for switching power supplies, DC-DC converters, ballasts (inverter fluorescent lamps), etc.
- 2. Ideal for use as the ballast in liquid crystal back lighting inverters.
- 3. Please contact our sales representatives or engineers before using our products for other applications not specified above.

Part Number	Dimensions (mm)							
Part Number	L	L W T		e min.	g min.			
GRM21A	2.0 ±0.2	1.25 ±0.2	1.0 +0 0.3		0.7			
GRM31A	3.2 ±0.2	1.6 ±0.2	1.0 +0,-0.3		1 5*			
GRM31B	3.2 ±0.2	1.6 ±0.2	1.25 +0,-0.3					
GRM32A	3.2 +0.2	2.5 ±0.2	1.0 +0,-0.3	0.3	1.5			
GRM32B	3.2 ±0.2	2.5 ±0.2	1.25 +0,-0.3					
GRM42A	4.5 ±0.3	2.0 +0.2	1.0 +0,-0.3		29			
GRM42D	4.5 <u>1</u> 0.5	2.0 ±0.2	2.0 ±0.3		2.9			

^{*} GRM31A7U3D, GRM32A7U3D, GRM32B7U3D : 1.8mm min.

SL/U2J Characteristics

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM21A7U2E101JW31D	DC250	U2J (EIA)	100 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E151JW31D	DC250	U2J (EIA)	150 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E221JW31D	DC250	U2J (EIA)	220 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E331JW31D	DC250	U2J (EIA)	330 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E471JW31D	DC250	U2J (EIA)	470 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E681JW31D	DC250	U2J (EIA)	680 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E102JW31D	DC250	U2J (EIA)	1000 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E152JW31D	DC250	U2J (EIA)	1500 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E222JW31D	DC250	U2J (EIA)	2200 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM31A7U2E332JW31D	DC250	U2J (EIA)	3300 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2E472JW31D	DC250	U2J (EIA)	4700 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31B7U2E682JW31L	DC250	U2J (EIA)	6800 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31B7U2E103JW31L	DC250	U2J (EIA)	10000 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U2J100JW31D	DC630	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J150JW31D	DC630	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J220JW31D	DC630	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J330JW31D	DC630	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J470JW31D	DC630	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J680JW31D	DC630	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J101JW31D	DC630	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J151JW31D	DC630	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J221JW31D	DC630	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J331JW31D	DC630	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J471JW31D	DC630	U2J (EIA)	470 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J681JW31D	DC630	U2J (EIA)	680 ±5%	3.2	1.6	1.0	1.5	0.3 min.

Continued from the preceding page.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31A7U2J102JW31D	DC630	U2J (EIA)	1000 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM32A7U2J152JW31D	DC630	U2J (EIA)	1500 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM32A7U2J222JW31D	DC630	U2J (EIA)	2200 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM31A7U3A100JW31D	DC1000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A150JW31D	DC1000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A220JW31D	DC1000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A330JW31D	DC1000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A470JW31D	DC1000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A680JW31D	DC1000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A101JW31D	DC1000	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A151JW31D	DC1000	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A221JW31D	DC1000	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A331JW31D	DC1000	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31B7U3A471JW31L	DC1000	U2J (EIA)	470 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U3D100JW31D	DC2000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D120JW31D	DC2000	U2J (EIA)	12 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D150JW31D	DC2000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D180JW31D	DC2000	U2J (EIA)	18 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D220JW31D	DC2000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D270JW31D	DC2000	U2J (EIA)	27 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D330JW31D	DC2000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D390JW31D	DC2000	U2J (EIA)	39 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D470JW31D	DC2000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D560JW31D	DC2000	U2J (EIA)	56 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D680JW31D	DC2000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM32A7U3D820JW31D	DC2000	U2J (EIA)	82 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D101JW31D	DC2000	U2J (EIA)	100 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D121JW31D	DC2000	U2J (EIA)	120 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D151JW31D	DC2000	U2J (EIA)	150 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32B7U3D181JW31L	DC2000	U2J (EIA)	180 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM32B7U3D221JW31L	DC2000	U2J (EIA)	220 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM42D1X3F100JY02L	DC3150	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F120JY02L	DC3150	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F150JY02L	DC3150	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F180JY02L	DC3150	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F220JY02L	DC3150	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42A7U3F270JW31L	DC3150	U2J (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F330JW31L	DC3150	U2J (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F390JW31L	DC3150	U2J (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F470JW31L	DC3150	U2J (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F560JW31L	DC3150	U2J (EIA)	56 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F680JW31L	DC3150	U2J (EIA)	68 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F820JW31L	DC3150	U2J (EIA)	82 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F101JW31L	DC3150	U2J (EIA)	100 ±5%	4.5	2.0	1.0	2.9	0.3 min.

Application Specific Products, C0G Characteristics

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM42A5C3F050DW01L	DC3150	C0G (EIA)	5.0 ±0.5pF	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F100JW01L	DC3150	C0G (EIA)	10 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F120JW01L	DC3150	C0G (EIA)	12 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F150JW01L	DC3150	C0G (EIA)	15 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F180JW01L	DC3150	C0G (EIA)	18 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F220JW01L	DC3150	C0G (EIA)	22 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F270JW01L	DC3150	C0G (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F330JW01L	DC3150	C0G (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F390JW01L	DC3150	C0G (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F470JW01L	DC3150	C0G (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.

Please contact us in case that the COG char. DC3150V items are considered to use for the application which is not LCD back lighting inverters circuit.

No.	Ite	em	Specifications		Test Method			
1	Operating Temperatu	ıre Range	-55 to +125℃					
2	Appearar	nce	No defects or abnormalities	Visual inspection				
3	Dimensio	ns	Within the specified dimension	Using calipers				
4	Dielectric	Strength	No defects or abnormalities	No failure should be observed when voltage in Table is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA. Rated voltage Test voltage DC250V 200% of the rated voltage DC630V 150% of the rated voltage DC1kV, DC2kV 120% of the rated voltage DC3.15kV DC4095V				
5	Insulation I	Resistance	More than 10,000MΩ		should be measured with DC500±50V rated voltage : DC250V) and within 60±5			
6	Capacita	nce	Within the specified tolerance	The capacitance/Q shou and voltage shown as fol	Id be measured at 20°C at the frequency llows.			
7	7 Q		C0G/U2J char. : 1,000 min. SL char. : 400+20C*1 min.	Capacitance Frequency Voltage C<1,000pF				
8	Capacitance 8 Temperature Characteristics		Temp. Coefficient COG char.: 0±30ppm/°C (Temp. Range: +25 to +125°C) 0+30, -72ppm/°C (Temp. Range: -55 to +25°C) U2J char.: -750±120 ppm/°C (Temp. Range: +25 to +125°C) -750+120, -347 ppm/°C (Temp. Range: -55 to +25°C) SL char.: +350 to -1000 ppm/°C (Temp. Range: +20 to +85°C)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (SL char.: +20 to +85°C) the capacitance should be within the specified tolerance for the temperature coefficient. Step Temperature (°C) 1 25±2 (20±2 for SL char.) 2 Min. Operating Temp.±3 3 25±2 (20±2 for SL char.) 4 Max. Operating Temp.±2 5 25±2 (20±2 for SL char.)				
9	9 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. ToN, 10±1s Speed: 1.0mm/s Glass Epoxy Board				
		Appearance	No defects or abnormalities	Solder the capacitor to the	ne test jig (glass epoxy board).			
		Capacitance	Within the specified tolerance	The capacitor should be	subjected to a simple harmonic motion			
10	Vibration Resistance	Q	C0G/U2J char. : 1,000 min. SL char. : 400+20C*1 min.	uniformly between the ap frequency range, from 10 traversed in approximate for a period of 2 hrs. in e (total of 6 hrs.).	of 1.5mm, the frequency being varied oproximate limits of 10 and 55Hz. The 0 to 55Hz and return to 10Hz, should be ly 1 min. This motion should be applied ach 3 mutually perpendicular directions Solder resist Cu Epoxy Board			

^{*1 &}quot;C" expresses nominal capacitance value (pF).

No.	Ite	em	Specifications	Test Method
11	Solderability of		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize (in mm) Fig. 3 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec.
	Terminati	on	and continuously.	Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder
13	Resistance to Soldering	Appearance Capacitance Change	No marking defects Within ±2.5% C0G/U2J char. : 1,000 min. SL char. : 400+20C*2 min.	Preheat the capacitor at 120 to 150°C* for 1 min. Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at *¹room condition for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s
	Heat	I.R.	More than 10,000M Ω	*Preheating for more than 3.2X2.5mm
			INOTE than 10,000Ws2	Step Temperature Time 1 100 to 120℃ 1 min.
		Dielectric Strength	In accordance with item No.4	2 170 to 200°C 1 min.
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4 using a eutectic solder.
		Capacitance Change	Within ±2.5%	Perform the 5 cycles according to the 4 heat treatments listed in the following table.
		Q	C0G char. : 1,000 min. U2J char. : 500 min.	Let sit for 24±2 hrs. at *1room condition, then measure. Step Temperature (°C) Time (min.)
			SL char. : 400+20C*2 min.	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3
	Temperature	I.R.	More than 10,000M Ω	2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3
14	Cycle	Dielectric Strength	In accordance with item No.4	3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 2 to 3 Solder resist Cu Glass Epoxy Board Fig. 4
		Appearance	No marking defects	
		Capacitance Change	Within ±5.0%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95%
15	Humidity (Steady State)	Q	C0G/U2J char. : 350 min. SL char. : 275+5/2C*2 min.	for 500 ^{±24} ohrs. Remove and let sit for 24±2 hrs. at *1room condition, then
	States	I.R.	More than 1,000M Ω	measure.
		Dielectric Strength	In accordance with item No.4	
		Appearance	No marking defects	
		Capacitance Change	Within ±3.0%	Apply 120% of the rated voltage for 1,000 ±48 hrs. at maximum
16	Life	Q	C0G/U2J char. : 350 min.	operating temperature ±3°C. Remove and let sit for 24±2 hrs. at *1room condition, then
10	Liic	<u> </u>	SL char. : 275+5/2C*2 min.	measure.
		I.R.	More than 1,000M Ω	The charge/discharge current is less than 50mA.
		Dielectric Strength	In accordance with item No.4	
110		tion" Tomo	porature : 15 to 35°C Polative humidity : 45 to 75% Atmospheric	00 to 400l Do

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa *2 "C" expresses nominal capacitance value (pF).

Medium Voltage High Capacitance for General-Use

■ Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 2. Sn-plated external electrodes realizes good solderability.
- 3. Use the GRM18/21/31 types with flow or reflow soldering, and other types with reflow soldering only.

■ Applications

- 1. Ideal for use as a hot-cold coupling for DC-DC converter.
- 2. Ideal for use on line filters and ringer detectors for telephones, facsimiles and modems.
- 3. Ideal for use on diode-snubber circuits for switching power supplies.

Part Number		Din	nensions (mm	1)		
Fait Number	L	W	T	е	g min.	
GRM188	1.6 ±0.1	1.6 ±0.1 0.8 ±0.1		0.2 to 0.5	0.4	
GRM21A	2.0 ±0.2	1.25 ±0.2	1.0 +0,-0.3		0.7	
GRM21B	2.0 ±0.2	1.25 ±0.2	1.25 ±0.2		0.7	
GRM31B	3.2 ±0.2	1.6 ±0.2	1.25 +0,-0.3			
GRM31C	3.2 ±0.2	1.0 ±0.2	1.6 ±0.2		12	
GRM32Q	3.2 ±0.3	2.5 ±0.2	1.5 +0,-0.3	0.3 min.	1.2	
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 +0,-0.3			
GRM43Q	4.5 ±0.4	3.2 ±0.3	1.5 +0,-0.3		22	
GRM43D	4.5 ±0.4	3.2 ±0.3	2.0 + 0, -0.3		2.2	
GRM55D	5.7 ±0.4	5.0 ±0.4	2.0 +0,-0.3		3.2	

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM188R72E221KW07D	DC250	X7R (EIA)	220pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E331KW07D	DC250	X7R (EIA)	330pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E471KW07D	DC250	X7R (EIA)	470pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E681KW07D	DC250	X7R (EIA)	680pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E102KW07D	DC250	X7R (EIA)	1000pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E102KW01D	DC250	X7R (EIA)	1000pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E152KW07D	DC250	X7R (EIA)	1500pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E152KW01D	DC250	X7R (EIA)	1500pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E222KW07D	DC250	X7R (EIA)	2200pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E222KW01D	DC250	X7R (EIA)	2200pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E332KW01D	DC250	X7R (EIA)	3300pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E472KW01D	DC250	X7R (EIA)	4700pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E682KW01D	DC250	X7R (EIA)	6800pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21BR72E103KW03L	DC250	X7R (EIA)	10000pF ±10%	2.0	1.25	1.25	0.7	0.3 min.
GRM31BR72E153KW01L	DC250	X7R (EIA)	15000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72E223KW01L	DC250	X7R (EIA)	22000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72E333KW03L	DC250	X7R (EIA)	33000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31CR72E473KW03L	DC250	X7R (EIA)	47000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31BR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM31CR72E104KW03L	DC250	X7R (EIA)	0.10μF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32DR72E104KW01L	DC250	X7R (EIA)	0.10μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72E154KW01L	DC250	X7R (EIA)	0.15μF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM32DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM43DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72E105KW01L	DC250	X7R (EIA)	1.0μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR72J102KW01L	DC630	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J152KW01L	DC630	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.

Continued from the preceding page.

Part Number	Rated Voltage (V)	Ganacitance		Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31BR72J222KW01L	DC630	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J332KW01L	DC630	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J472KW01L	DC630	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J682KW01L	DC630	X7R (EIA)	6800pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J103KW01L	DC630	X7R (EIA)	10000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72J153KW03L	DC630	X7R (EIA)	15000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72J223KW01L	DC630	X7R (EIA)	22000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR72J333KW01L	DC630	X7R (EIA)	33000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR72J473KW01L	DC630	X7R (EIA)	47000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72J683KW01L	DC630	X7R (EIA)	68000pF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM43DR72J104KW01L	DC630	X7R (EIA)	0.10μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72J154KW01L	DC630	X7R (EIA)	0.15μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72J224KW01L	DC630	X7R (EIA)	0.22μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR73A102KW01L	DC1000	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A152KW01L	DC1000	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A222KW01L	DC1000	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A332KW01L	DC1000	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A472KW01L	DC1000	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR73A682KW01L	DC1000	X7R (EIA)	6800pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32QR73A103KW01L	DC1000	X7R (EIA)	10000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR73A153KW01L	DC1000	X7R (EIA)	15000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR73A223KW01L	DC1000	X7R (EIA)	22000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR73A333KW01L	DC1000	X7R (EIA)	33000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR73A473KW01L	DC1000	X7R (EIA)	47000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR73A104KW01L	DC1000	X7R (EIA)	0.10μF ±10%	5.7	5.0	2.0	3.2	0.3 min.

No.	Item		Specifications	Test Method
1	Operating Temperature F	Range	-55 to +125℃	-
2	Appearance		No defects or abnormalities	Visual inspection
3	Dimensions		Within the specified dimensions	Using calipers
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when 150% of the rated voltage (200% of the rated voltage in case of rated voltage: DC250V, 120% of the rated voltage in case of rated voltage: DC1kV) is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.
5	Insulation Resistance (I.R.)	stance	C≥0.01μF : More than 100MΩ • μF C<0.01μF : More than 10,000MΩ	The insulation resistance should be measured with DC500±50V (DC250±50V in case of rated voltage : DC250V) and within 60±5 sec. of charging.
6	Capacitance Within the specified tolerance			The capacitance/D.F. should be measured at 25°C at a frequency of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.) •Pretreatment
7	Dissipation Factor (D.F.)		0.025 max.	Perform a heat treatment at 150 $^{+0}_{-10}$ °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
8	Characteristics Adhesive Strength		Cap. Change Within ±15% (Temp. Range : −55 to +125°C)	The range of capacitance change compared with the 25°C value within -55 to +125°C should be within the specified range. • Pretreatment Perform a heat treatment at 150 +0°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
9			No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N (5N: Size 1.6×0.8mm only), 10±1s Speed: 1.0mm/s Glass Epoxy Board
				Fig. 1
	Арр	pearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board). The capacitor should be subjected to a simple harmonic motion
10	Vibration Resistance D.	pacitance	Within the specified tolerance 0.025 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board
			No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder.
11	1 Deflection		Dimension (mm)	Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize Pressurize Flexure=1 Capacitance meter 45 (in mm)

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

o. It	em	Specifications		Test Method				
2 Solderat Terminal	oility of	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder					
	Appearance	No marking defects	Preheat the capacitor at 120 to 150°C* for 1 min.					
	Capacitance Change	Within ±10%	sec. Let sit at	apacitor in solder solution at 2 toom condition for 24±2 hrs.,				
	D.F.	0.025 max.		•Immersing speed : 25±2.5mm/s •Pretreatment				
Resistance to Soldering Heat	I.R.	C≥0.01μF : More than $100M\Omega \bullet \mu F$ C<0.01μF : More than $10,000M\Omega$		at treatment at $150 \pm_{1} \%$ c for 6 2 hrs. at *room condition.	60±5 min. and then			
	Dielectric Strength	In accordance with item No.4	*Preheating fo	or more than 3.2×2.5mm Temperature 100 to 120°C 170 to 200°C	Time 1 min. 1 min.			
	Appearance	No marking defects	Fix the capaci	tor to the supporting jig (glass	epoxy board) shown			
	Capacitance Change	Within ±7.5%	0 0	a eutectic solder. cycles according to the 4 heat able.	treatments listed in			
	D.F.	0.025 max.	_	2 hrs. at *room condition, then				
	LR. C≥0.01μF : More than 100MΩ • μF		Step 1	Temperature (℃) Min. Operating Temp.±3	Time (min.) 30±3			
		C<0.01μF : More than 10,000MΩ	2	Room Temp.	2 to 3			
			3 4	Max. Operating Temp.±2 Room Temp.	30±3 2 to 3			
	Dielectric Strength	In accordance with item No.4		Solder Glass Epoxy Board Fig. 4	rresist			
	Appearance	No marking defects						
	Capacitance Change	Within ±15%	for 500 ± 24 hr		,			
Humidity 5 (Steady	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at *room condition, then measure.					
State)	I.R.	$C \ge 0.01 \mu F$: More than $10 M \Omega \cdot \mu F$ $C < 0.01 \mu F$: More than $1,000 M \Omega$		at treatment at 150 [±] ₁8°C for 6	60±5 min. and then			
	Dielectric Strength	In accordance with item No.4	let sit ioi 241	let sit for 24±2 hrs. at *room condition.				
	Appearance Capacitance Change	No marking defects Within ±15% (rated voltage : DC250V, DC630V) Within ±20% (rated voltage : DC1kV)	Apply 120% of the rated voltage (150% of the rated voltage in case of rated voltage : DC250V, 110% of the rated voltage in case of rated voltage : DC1kV) for 1,000 ±48 hrs. at maximum					
			operating temperature ±3°C. Remove and let sit for 24 ±2 hrs. a					
6 Life	D.F.	0.05 max.	operating tem					
6 Life		,	operating tem *room condition The charge/dis •Pretreatmen	n, then measure. scharge current is less than 50 i	t sit for 24 ± 2 hrs. at			
6 Life	D.F.	0.05 max. C≥0.01μF : More than 10MΩ • μF	operating tem *room condition The charge/di: •Pretreatmen Apply test vo	n, then measure. scharge current is less than 50	t sit for 24 ±2 hrs. at mA. perature.			
6 Life	D.F. I.R. Dielectric	0.05 max. C≥0.01μF : More than 10MΩ • μF C<0.01μF : More than 1,000MΩ	operating tem *room condition The charge/di: •Pretreatmen Apply test vo	n, then measure. scharge current is less than 50 i tage for 60±5 min. at test tem	t sit for 24 ±2 hrs. at mA. perature.			
6 Life Humidity Loading	D.F. I.R. Dielectric Strength	0.05 max. C≥0.01μF : More than 10MΩ • μF C<0.01μF : More than 1,000MΩ In accordance with item No.4	*room condition The charge/die Pretreatment Apply test von Remove and Apply the rate 95% for 500 ±	n, then measure. scharge current is less than 50 tage for 60±5 min. at test tem let sit for 24±2 hrs. at *room c d voltage at 40±2°C and relativ 24 hrs.	t sit for 24 ±2 hrs. a mA. perature. ondition. e humidity of 90 to			
Humidity Loading (Application:	D.F. I.R. Dielectric Strength Appearance Capacitance	0.05 max. $C \ge 0.01 \mu F$: More than $10 M \Omega \bullet \mu F$ $C < 0.01 \mu F$: More than $1,000 M \Omega$ In accordance with item No.4 No marking defects	*room condition The charge/die Pretreatment Apply test von Remove and Apply the rate 95% for 500 ±	n, then measure. scharge current is less than 50 tage for 60±5 min. at test tem let sit for 24±2 hrs. at *room c	t sit for 24 ±2 hrs. a mA. perature. ondition. e humidity of 90 to			
Humidity Loading (Application	D.F. I.R. Dielectric Strength Appearance Capacitance Change	0.05 max. $C \ge 0.01 \mu F$: More than $10 M \Omega \cdot \mu F$ $C < 0.01 \mu F$: More than $1,000 M \Omega$ In accordance with item No.4 No marking defects	*room condition The charge/dii Pretreatmen Apply test vo Remove and Apply the rate 95% for 500 ± Remove and I measure. Pretreatmen Apply test vo	n, then measure. scharge current is less than 50 it tage for 60±5 min. at test tem let sit for 24±2 hrs. at *room cd voltage at 40±2°C and relative 2d hrs. et sit for 24±2 hrs. at *room cd to 24±2	t sit for 24 ±2 hrs. a mA. perature. ondition. the humidity of 90 to andition, then perature.			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Only for Information Devices/Tip & Ring

■ Features

- 1. These items are designed specifically for telecommunication devices (IEEE802.3) in Ethernet LAN.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- 5. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Don't Numeron	Dimensions (mm)							
Part Number	L	W	Т	g min.				
GR442Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3					
GR443D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	2.5				
GR443Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3					

Applications

Ideal for use on telecommunication devices in Ethernet LAN

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR442QR73D101KW01L	DC2000	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D121KW01L	DC2000	X7R (EIA)	120 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D151KW01L	DC2000	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D181KW01L	DC2000	X7R (EIA)	180 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D221KW01L	DC2000	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D271KW01L	DC2000	X7R (EIA)	270 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D331KW01L	DC2000	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D391KW01L	DC2000	X7R (EIA)	390 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D471KW01L	DC2000	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D561KW01L	DC2000	X7R (EIA)	560 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D681KW01L	DC2000	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D821KW01L	DC2000	X7R (EIA)	820 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D102KW01L	DC2000	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D122KW01L	DC2000	X7R (EIA)	1200 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D152KW01L	DC2000	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR443QR73D182KW01L	DC2000	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D222KW01L	DC2000	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D272KW01L	DC2000	X7R (EIA)	2700 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D332KW01L	DC2000	X7R (EIA)	3300 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D392KW01L	DC2000	X7R (EIA)	3900 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443DR73D472KW01L	DC2000	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

No.	Ite	em	Specifications		Test Method		
1	Operating Temperatu	ıre Range	−55 to +125°C		-		
2	Appearan	nce	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	Dielectric	Strength	No defects or abnormalities	between the termina is less than 50mA.	observed when voltage in table is applied ations, provided the charge/discharge current		
		ŭ		Rated voltage	Test Voltage Time 120% of the rated voltage 60±1 sec.		
				DC2kV	AC1500V(r.m.s.) 60±1 sec.		
5	Pulse Vol	tage	No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of alterna (5 impulse for each The interval between Applied Voltage: 2.5	n impulse is 60 sec.		
6	Insulation F (I.R.)	Resistance	More than $6{,}000M\Omega$	The insulation resist and within 60±5 sec	cance should be measured with DC500±50V c. of charging.		
7	Capacitar	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at a free of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.) •Pretreatment			
8	Dissipation Factor (D		0.025 max.		atment at 150 $^{+0}_{-10}$ °C for 60±5 min. and then at *room condition.		
9	Capacitance 9 Temperature Characteristics		Cap. Change within ±15% (Temp. Range : −55 to +125℃)	The range of capacitance change compared with the 25°C value within the specified range. •Pretreatment Perform a heat treatment at 150 ± 9 °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *room condition.			
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	in Fig. 1 using a euton Then apply 10N force The soldering should reflow method and s	to the testing jig (glass epoxy board) shown ectic solder. the in the direction of the arrow. It is done either with an iron or using the should be conducted with care so that the and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board		
				Fig. 1			
		Appearance	No defects or abnormalities		to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance		d be subjected to a simple harmonic motion and tude of 1.5mm, the frequency being varied		
11	Vibration Resistance			uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.).			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

116

Specifications and Test Methods

\square	Continued fr	om the prec	eding page.										
No.	Ite	em		Sį	pecification	S			Test Method				
12	2 Deflection		Deflection No cracking or marking defects should occur.					Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Pressurizing Speed: 1.0mm/s Pressurize Flexure=1 Capacitance meter 45 (in mm)					
								Fig. 3					
13	Solderab Terminati	-	75% of the terminations are to be soldered evenly and continuously.				I continuously.	rosin (JIS-K-5 Immerse in so Immersing sp	capacitor in a solution of ethan 902) (25% rosin in weight prop older solution for 2±0.5 sec. eed : 25±2.5mm/s er : 245±5°C Lead Free Solde 235±5°C H60A or H63A E	portion). er (Sn-3.0Ag-0.5Cu)			
		Appearance	No marking def	fects					apacitor as table.	200 5°0 for 40 4			
		Capacitance Change	Within ±10%					Immerse the capacitor in solder solution at 260±5℃ for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure. •Immersing speed : 25±2.5mm/s					
	D. datama	D.F.	0.025 max.					 Pretreatmen 	t	CO 5 min and these			
14	Resistance to Soldering	I.R.	More than 1,00	0ΜΩ					eat treatment at 150±₁8°C for 22 hrs. at *room condition.	60±5 min. and then			
	Heat	Dielectric Strength	In accordance with item No.4					*Preheating Step 1 2	Temperature 100 to 120°C 170 to 200°C	Time 1 min. 1 min.			
		Appearance	No marking def	fects				-	tor to the supporting jig (glass	epoxy board) shown			
		Capacitance Change	Within ±15%					in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at *room condition, then measure.					
		D.F.	0.05 max.										
		I.R.	More than 3,00	ΩΜΟ				Step 1	Temperature (°C) Min. Operating Temp.±3	Time (min.) 30±3			
								2	Room Temp.	2 to 3			
								3 4	Max. Operating Temp.±2 Room Temp.	30±3 2 to 3			
15	Temperature Cycle	Dielectric Strength In accordance with item No.4				•Pretreatment Perform a heat treatment at 150±18°C for 60±5 min. and the let sit for 24±2 hrs. at *room condition.							
		Appearance	No marking def	fects									
	Humidity	Capacitance Change	Within ±15%					for 500 ±24 h	itor sit at 40±2°C and relative hrs. let sit for 24±2 hrs. at *room c	·			
16	_	D.F.	0.05 max.					measure.		ondition, then			
	State)	I.R.	More than 1,00	0ΜΩ				Pretreatmen Perform a be		60+5 min and than			
		Dielectric Strength	In accordance	with item No	0.4			Perform a heat treatment at $150^{\pm}_{-1}^{\circ}$ °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *room condition.					
- 115													

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page.

_							
No	. Item		Specifications	Test Method			
		Appearance	No marking defects				
		Capacitance Change	Within ±20%	Apply 110% of the rated voltage for $1,000^{\pm 4}$ 8 hrs. at maximum operating temperature $\pm 3^{\circ}$ C. Remove and let sit for 24 ± 2 hrs. at *room condition, then measure.			
17	Life	D.F.	0.05 max.	The charge/discharge current is less than 50mA.			
		I.R.	More than $2{,}000M\Omega$	Pretreatment Apply test voltage for 60±5 min. at test temperature.			
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Only for Camera Flash Circuit

■ Features

- 1. Suitable for the trigger of the flash circuit, because real capacitance is stable during operating voltage.
- 2. The thin type fit for thinner camera.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. For flow and reflow soldering

■ Applications

For strobe circuit

Doub Number	Dimensions (mm)						
Part Number	L	W	T	g min.			
GR731A			1.0 +0, -0.3				
GR731B	3.2 ±0.2	1.6 ±0.2	1.25 +0, -0.3	1.2			
GR731C			1.6 ±0.2				

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR731AW0BB103KW01D	DC350	-	10000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731AW0BB153KW01D	DC350	-	15000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731BW0BB223KW01L	DC350	-	22000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731BW0BB333KW01L	DC350	-	33000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731CW0BB473KW03L	DC350	-	47000 ±10%	3.2	1.6	1.6	1.2	0.3 min.

118

No.	Ite	em	Specifications	Test Method
1	Operating Temperatu	ıre Range	-55 to +125℃	-
2	Appearance No defects or abnormalities		No defects or abnormalities	Visual inspection
3	B Dimensions		Within the specified dimensions	Using calipers
4			No defects or abnormalities	No failure should be observed when DC500V is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.
5	Insulation F (I.R.)	Resistance	C≥0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	The insulation resistance should be measured with DC250±50V and within 60±5 sec. of charging.
6	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at a frequency of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.)
7	Dissipation Factor (D		0.025 max.	•Pretreatment Perform a heat treatment at 150 ⁺ 0° ℃ for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
8	Temperat	apacitance Cap. Change within ±10% (Apply DC350V bias) Within ±33% (No DC bias)		The range of capacitance change compared with the 25°C value within -55 to +125°C should be within the specified range. •Pretreatment Perform a heat treatment at 150 ±°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig. 1
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion
10	Vibration Resistance	D.F.	0.025 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board
			No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown
11	Deflection	n	LXW Dimension (mm) (mm) a b c d 3.2×1.6 2.2 5.0 2.0 1.0 Fig. 2	in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Pressurizing speed: 1.0mm/s Pressurize Pressurize Capacitance meter (in mm) Fig. 3
12	2 Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder

muRata

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued from the preceding page.

No.	Ite	em	Specifications		Test Method Preheat the capacitor at 120 to 150°C° for 1 min.			
13	Resistance to Soldering Heat	Appearance Capacitance Change D.F. I.R.	No marking defects $Within \pm 10\%$ $0.025 max.$ $C \ge 0.01 μF: More than 100 MΩ • μF C < 0.01 μF: More than 10,000 MΩ$	Preheat the capacitor at 120 to 150°°c for 1 min Immerse the capacitor in solder solution at 260: sec. Let sit at *room condition for 24±2 hrs., the Immersing speed: 25±2.5mm/s •Pretreatment Perform a heat treatment at 150±10°c for 60: let sit for 24±2 hrs. at *room condition. *Preheating for more than 3.2×2.5mm		60±5℃ for 10±1 then measure.		
		Dielectric Strength	In accordance with item No.4	Step 1 2	Temperature 100 to 120℃ 170 to 200℃	Time 1 min. 1 min.		
		Appearance	No marking defects	Fix the capaci	Fix the capacitor to the supporting jig (glass epoxy boa			
		Capacitance Change D.F.	Within ±7.5% 0.025 max.	Perform the 5 the following t	in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at *room condition, then measure.			
		I.R.	C≧0.01μF: More than 100MΩ • μF	Step	Temperature (℃)	Time (min.)		
		I.K.	C<0.01μF: More than 10,000MΩ	1	Min. Operating Temp.±3	30±3		
14	Temperature Cycle			2 3 4 •Pretreatmen		2 to 3 30±3 2 to 3		
		Dielectric Strength	In accordance with item No.4		eat treatment at 150 ± 18 °C for e2 hrs. at *room condition. Solde Glass Epoxy Board Fig. 4	6U±5 min. and then		
		Appearance	No marking defects		<u> </u>			
		Capacitance Change	Within ±15%	for 500 ⁺²⁴ h	Let the capacitor sit at 40±2°C and relative humidity of 90 to 9 for 500 ^{±24} hrs.			
15	Humidity (Steady	D.F.	0.05 max.	Remove and measure.	Remove and let sit for 24±2 hrs. at *room condition, then			
	State)	I.R.	C≥0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	 Pretreatmen Perform a he 	eat treatment at 150±₁8°C for	60±5 min. and then		
		Dielectric Strength	In accordance with item No.4	let sit for 24±	-2 hrs. at *room condition.			
		Appearance	No marking defects					
		Capacitance Change	Within ±15%	temperature ±	V for 1,000 ±⁴8 hrs. at maximu Ŀ3℃. Remove and let sit for 24			
16	Life	D.F.	0.05 max.	condition, the	n measure. scharge current is less than 50)mA		
	Liio	I.R.	C≥0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	Pretreatmen	•			
		Dielectric Strength	In accordance with item No.4	Remove and	let sit for 24±2 hrs. at *room o	condition.		
		Appearance	No marking defects					
		Capacitance Change	Within ±15%	95% for 500±				
17	Humidity	D.F.	0.05 max.		let sit for 24±2 hrs. at *room co	ondition, then		
17	Loading	I.R.	C≥0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	measure. •Pretreatmen Apply test vo	t oltage for 60±5 min. at test tem	perature.		
		Dielectric Strength	In accordance with item No.4		let sit for 24±2 hrs. at *room o			

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

Chip Monolithic Ceramic Capacitors

AC250V(r.m.s.) Type (Which Meet Japanese Law)

■ Features

- 1. Chip monolithic ceramic capacitor for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- 5. Capacitance 0.01 to 0.1uF for connecting lines and 470 to 4700pF for connecting lines to earth.

■ Applications

Noise suppression filters for switching power supplies, telephones, facsimiles, modems.

■ Reference standard

GA2 series obtains no safety approval. This series is based on JIS C 5102, JIS C 5150, and the standards of the electrical appliance and material safety law of Japan (separated table 4).

Part Number	Dimensions (mm)						
Part Number	L	W	Т	e min.	g min.		
GA242Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3				
GA243D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	0.3	2.5		
GA243Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3	0.3			
GA255D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3		3.2		

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA242QR7E2471MW01L	AC250 (r.m.s.)	X7R (EIA)	470pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA242QR7E2102MW01L	AC250 (r.m.s.)	X7R (EIA)	1000pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA243QR7E2222MW01L	AC250 (r.m.s.)	X7R (EIA)	2200pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2332MW01L	AC250 (r.m.s.)	X7R (EIA)	3300pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2472MW01L	AC250 (r.m.s.)	X7R (EIA)	4700pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA243QR7E2103MW01L	AC250 (r.m.s.)	X7R (EIA)	10000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2223MW01L	AC250 (r.m.s.)	X7R (EIA)	22000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2473MW01L	AC250 (r.m.s.)	X7R (EIA)	47000pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA255DR7E2104MW01L	AC250 (r.m.s.)	X7R (EIA)	0.10μF ±20%	5.7	5.0	2.0	3.2	0.3 min.

No.	Ite	m	Specifications	Test Method
1	Operating Temperatu	ıre Range	-55 to +125℃	-
2	Appearan	ice	No defects or abnormalities	Visual inspection
3	Dimensio	ns	Within the specified dimensions	Using calipers
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Nominal Capacitance Test voltage C≥10,000pF AC575V(r.m.s.) C<10,000pF AC1500V(r.m.s.)
5	Insulation F (I.R.)	Resistance	More than $2{,}000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.
6	Capacitar	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25℃ at a frequency
7	Dissipation Factor (D		0.025 max.	of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.) •Pretreatment Perform a heat treatment at 150±₁6°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
8	Capacitar Temperati Character	ure	Cap. Change Within ±15% (Temp. Range : −55 to +125°C)	The range of capacitance change compared with the 25°C value within −55 to +125°C should be within the specified range. •Pretreatment Perform a heat treatment at 150±₁8°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
9	Discharge Test (Application: Nominal Capacitance C<10,000pF)	Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from the capacitor (Cd) charged at DC voltage of specified. R3 R1 Ct: Capacitor under test Cd: 0.001μF R1: 1,000Ω R2: 100ΜΩ R3: Surge resistance
10	Adhesive of Termin	9	No removal of the terminations or other defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Glass Epoxy Board Fig. 1
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion
11	Vibration Resistance	D.F.	0.025 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page

\square	Continued fr	om the prec	eding page.			
No.	Ite	em	Specifications	Test Method		
			No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted.		
12	Deflection		\$\frac{1}{2} \\ \frac{1}{2} \\ \frac	with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s		
			100 t:1.6	R230		
			LXW Dimension (mm) (mm) a b c d	Capacitance meter		
			4.5×2.0 3.5 7.0 2.4	45 45 (in mm)		
			4.5×3.2 3.5 7.0 3.7 1.0 5.7×5.0 4.5 8.0 5.6	Fig. 3		
			5.7×5.0 4.5 8.0 5.6 Fig. 2	. · · · · ·		
				Immerse the capacitor in a solution of ethanol (JIS-K-8101) and		
13	Solderab Terminati			rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder		
		Appearance	No marking defects	23323 O HOUA OF HOUA Editedite Golder		
		Capacitance Change	Within ±15%	The capacitor should be subjected to 40±2°C, relative humidity of 90 to 98% for 8 hrs., and then removed in *room condition for 16		
14	Humidity	D.F.	0.05 max.			
	Insulation	I.R.	More than 1,000M Ω	hrs. until 5 cycles.		
		Dielectric Strength	In accordance with item No.4			
		Appearance	No marking defects	Preheat the capacitor as table.		
		Capacitance Change	Within ±10%	Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure.		
	Resistance	D.F.	0.025 max.	Immersing speed : 25±2.5mm/s Pretreatment Perform a heat treatment at 150±₁% ℃ for 60±5 min. and then let sit for 24±2 hrs. at *room condition. *Preheating*		
15		I.R.	More than $2,000M\Omega$			
	Heat					
		Dielectric	In accordance with item No.4	Step Temperature Time		
		Strength		1 100 to 120℃ 1 min.		
		Annogrance	No marking defects	2 170 to 200°C 1 min. Fix the capacitor to the supporting jig (glass epoxy board) shown		
		Appearance Capacitance	No marking defects Within ±15%	in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in		
		Change D.F.	0.05 max.	the following table.		
				Let sit for 24±2 hrs. at *room condition, then measure. Step Temperature (°C) Time (min.)		
		I.R.	More than 2,000MΩ	1 Min. Operating Temp.±3 30±3		
				2 Room Temp. 2 to 3		
				3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3		
16	Temperature Cycle	Dielectric	In accordance with item No.4	•Pretreatment Perform a heat treatment at 150 [±] ₁₈ °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.		
		Strength		Solder resist Glass Epoxy Board		
				Fig. 4		

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued on the following page.

Fig. 4

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method
		Appearance	No marking defects	
	Humidity	Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±24° hrs. Remove and let sit for 24±2 hrs. at *room condition, then
17	(Steady	D.F.	0.05 max.	measure.
	State)	I.R.	More than 1,000M Ω	Pretreatment Perform a heat treatment at 150 ⁺ 10 °C for 60±5 min, and then
		Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at *room condition.
		Appearance	No marking defects	Apply voltage and time as Table at 85±2℃. Remove and let sit
		Capacitance Change	Within ±20%	for 24 ±2 hrs. at *room condition, then measure. The charge / discharge current is less than 50mA.
	Life	D.F.	0.05 max.	Nominal Capacitance
18		I.R.	More than 1,000M Ω	C<10,000pF 1,500 ⁺⁴⁸ ₀ hrs. AC500V(r.m.s.) *
		Dielectric Strength	In accordance with item No.4	 Except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. Pretreatment Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at *room condition.
		Appearance	No marking defects	
		Capacitance Change	Within ±15%	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±2°6 hrs. Remove and let sit for 24±2 hrs. at *room condition, then
19	Humidity Loading	D.F.	0.05 max.	measure.
	Localing	I.R.	More than 1,000M Ω	Pretreatment Apply test voltage for 60±5 min. at test temperature.
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

124

Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)

■ Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GC can be used as an X1-class and Y2-class capacitor, line-by-pass capacitor of UL1414.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

■ Applications

- 1. Ideal for use as Y capacitor or X capacitor for various switching power supplies
- 2. Ideal for modem applications

Part Number	Dimensions (mm)					
Part Number	L	W	T	e min.	g min.	
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0	

■ Standard Recognition

	Standard No.	Status of R	Rated	
	Standard No.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		_	0	
VDE	EN132400	0	0	AC250V
SEV	EN132400	0	0	(r.m.s.)
SEMKO		0	0	
EN13240	0 Class	X2	X1, Y2	

*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GC101KY02L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC151KY02L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC221KY02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC331KY02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	5.7	5.0	2.0	4.0	0.3 min.

Safety Standard Recognized Type GD (IEC60384-14 Class Y3)

■ Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 2. The type GD can be used as a Y3-class capacitor.
- 3. Available for equipment based on IEC/EN60950 and UL1950.
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment

Part Number	Dimensions (mm)							
Part Number	L	W	T	e min.	g min.			
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.2*		2.5			
GA342Q	4.5 <u>1</u> 0.5	2.0 ±0.2	1.5 +0, -0.3	0.3				
GA343D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	0.3				
GA343Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3					

^{*} GA342D1X: 2.0±0.3

■ Standard Recognition

	Standard	Class	Status of Recognition	Rated
	No.	Class	Type GD	Voltage
SEMKO	EN132400	Y3	0	AC250V(r.m.s.)
Applications				
				Communication

Size	Switching power supplies	Communication network devices such as a modem
4.5×3.2mm and under	_	0

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGD100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GD101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD221KW01L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD331KW01L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA343QR7GD182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343QR7GD222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343DR7GD472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)

■ Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 2. The type GF can be used as a Y2-class capacitor.
- 3. Available for equipment based on IEC/EN60950 and UL1950. Besides, the GA352/355 types are available for equipment based on IEC/EN60065, UL1492, and UL6500.
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

■ Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment
- 3. Ideal for use as Y capacitor or X capacitor for various switching power supplies (GA352/355 types only)

Part Number	Dimensions (mm)							
Part Number	L	W	T	e min.	g min.			
GA342D	4.5 ±0.3	2.0 +0.2	2.0 ±0.2*		2.5			
GA342Q	4.5 ±0.5	2.0 ±0.2	1.5 +0, -0.3	0.3				
GA352Q		2.8 ±0.3	1.5 +0, -0.3		4.0			
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3					
GA355Q		5.0 ±0.4	1.5 +0, -0.3					

^{*} GA342D1X: 2.0±0.3

■ Standard Recognition

/				Status of R	ecognition	
		Standard	Class	Туре	Rated	
		No.	Class	Size : 4.5×2.0mm	Size : 5.7×2.8mm and over	Voltage
τ	JL	UL1414	X1, Y2	_	0	AC250V
5	SEMKO	EN132400	Y2	0	0	(r.m.s.)

Applications								
Size	Switching power supplies	Communication network devices such as a modem						
4.5×2.0mm	_	0						
5.7×2.8mm and over	0	0						

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGF100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GF101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GF151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342DR7GF221KW02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA342DR7GF331KW02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA352QR7GF471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA355QR7GF182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF332KW01L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355DR7GF472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	5.7	5.0	2.0	4.0	0.3 min.

Safety Standard Recognized Type GB (IEC60384-14 Class X2)

■ Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GB can be used as an X2-class capacitor.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

■ Applications

Ideal for use as X capacitor for various switching power supplies

Part Number		Dimensions (mm)						
	L	W	T	e min.	g min.			
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0			
GA355X	3.7 ±0.4	3.0 <u>1</u> 0.4	2.7 ±0.3	0.3	4.0			

■ Standard Recognition

	Standard No.	Status of R	Recognition	Rated
	Standard No.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		_	0	
VDE	EN132400	0	0	AC250V
SEV	EN132400	0	0	(r.m.s.)
SEMKO		0	0	
EN13240	0 Class	X2	X1, Y2	

*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GB103KY02L	AC250 (r.m.s.)	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB153KY02L	AC250 (r.m.s.)	X7R (EIA)	15000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB223KY02L	AC250 (r.m.s.)	X7R (EIA)	22000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355XR7GB333KY06L	AC250 (r.m.s.)	X7R (EIA)	33000 ±10%	5.7	5.0	2.7	4.0	0.3 min.

Operating Temperatu Appearar	ıre Range	-55 to +125℃		
		-55 to +125 C	-	
	nce	No defects or abnormalities	Visual inspection	
Dimensio	ns	Within the specified dimensions	Using calipers	
Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Test Voltage Type GB DC1075V Type GC/GD/GF AC1500V(r.m.s.)	
		No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage: 2.5kV zero to peak	
Insulation I (I.R.)	Resistance	More than $6{,}000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.	
Capacita	nce	Within the specified tolerance	The capacitance/Q/D.F. should be measured at 20℃ at a	
Dissipation 3 Factor (D.F.) Q		Char. Specification X7R D.F.≤0.025 SL Q≥400+20C*² (C<30pF)	frequency of 1±0.2kHz (SL char.: 1±0.2MHz) and a voltage of AC1±0.2V(r.m.s.). •Pretreatment for X7R char. Perform a heat treatment at 150±18° for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.	
Capacitance Temperature Characteristics		Char. Capacitance Change X7R Within ±15% Temperature characteristic guarantee is −55 to +125°C Char. Temperature Coefficient SL +350 to −1000ppm/°C Temperature characteristic guarantee is +20 to +85°C	The range of capacitance change compared with the 25°C (SL char. : 20°C) value within −55 to +125°C should be within the specified range. •Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at *¹room condition.	
	Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from	
	I.R.	More than 1,000M Ω	the capacitor (Cd) charged at DC voltage of specified.	
Discharge Test (Application: Type GC)	Dielectric Strength	In accordance with item No.4	R3 R1 Ct: Capacitor under test Cd: 0.001µF	
			R1 : $1,000\Omega$ R2 : $100M\Omega$ R3 : Surge resistance	
Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig. 1	
	(Applicating GD/GF) Insulation In (I.R.) Capacitant Factor (DQ Capacitant Temperat Character Discharge Test (Application: Type GC) Adhesive of Termina	Insulation Resistance (I.R.) Capacitance Dissipation Factor (D.F.) Q Capacitance Temperature Characteristics Appearance I.R. Discharge Test (Application: Type GC) Dielectric Strength Adhesive Strength of Termination	(Application: Type GD/GF) Insulation Resistance (I.R.) More than 6,000MΩ Capacitance Within the specified tolerance Dissipation Factor (D.F.) Q Char. Specification X7R D.F.≤0.025 SL Q≥400+20C*² (C<30pF) Q≥1000 (C≥30pF)	

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page.

No.		em		Specifications Test Method			
IVO.	110		·				
12	Appearance Capacitance Vibration Resistance D.F. Q		No defects or abnormalities Within the specified tolerance Char. Specification X7R D.F.≦0.025 Q≥400+20C*² (C<30pF)	Solder the capacitor to the test jig (glass epoxy board). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.).			
			SL Q≥1000 (C≥30pF)	Solder resist Glass Epoxy Board			
13	Deflection	n	No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize Capacitance meter (in mm)			
14	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder			
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in solder			
15	Resistance to Soldering	Capacitance Change	Char. Capacitance Change X7R Within ±10% SL Within ±2.5% or ±0.25pF (Whichever is larger)	solution at 260±5°C for 10±1 sec. Let sit at *'room condition for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s •Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.			
	Heat	I.R.	More than 1,000M Ω	di Dunha shin s			
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.			

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page

No.	Ite	em		Specifications		Test Method				
		Appearance Capacitance Change	Char. Capacitance Change X7R Within ±15%		in Fig. 4 Perform the follow Let sit for	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at *1room condition, then measure. Step Temperature (°C) Time (min.)				
16	Temperature Cycle	D.F. Q	Char. X7R SL	Specification D.F.≤0.05 Q≥400+20C*² (C<30pF) Q≥1000 (C≥30pF)		tmen	Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2 Room Temp. t for X7R char. at treatment at 150 ± 10 °C for	30±3 2 to 3 30±3 2 to 3		
		Dielectric Strength	More than	nce with item No.4	let sit fo	let sit for 24±2 hrs. at *1room condition Fig. 4				
17		Appearance Capacitance Change	Char. X7R SL	Capacitance Change Within ±15% Within ±5.0% or ±0.5pF (Whichever is larger)	-Item 11	Before this test, the test shown in the following is .Item 11 Adhesive Strength of Termination (apply .Item 13 Deflection				
	Humidity (Steady State)	D.F. Q	Char. X7R SL	Specification D.F.≦0.05 Q≥275+5/2C*² (C<30pF) Q≥350 (C≥30pF)	for 500 ± Remove measure • Pretreat	Let the capacitor sit at 40±2°C and relative humidity of 90 to 9 for 500±26 hrs. Remove and let sit for 24±2 hrs. at *1room condition, then measure. •Pretreatment for X7R char. Perform a host treatment at 450± 8°C for 60±5 min and the		condition, then		
		I.R. Dielectric Strength	More than	3,000MΩ nce with item No.4		Perform a heat treatment at 150±₁8℃ for 60±5 min. and then let sit for 24±2 hrs. at *iroom condition.				
		Appearance Capacitance Change	Char. X7R SL	y defects Capacitance Change Within ±20% Within ±3.0% or ±0.3pF (Whichever is larger)	-Item 11 -Item 13	Impulso Voltago		(apply force is 5N) time (T1)=1.2µs=1.67T to half-value (T2)=50us		
		D.F. Q	Char. X7R SL	Specification D.F.≤0.05 Q≥275+5/2C*2 (C<30pF) Q≥350 (C≥30pF)	GC/GF: voltage v peak) for capacitor	be subjected to a 2 GC/GF: 5kV) Impu voltage value mear peak) for three time capacitors are appl	Impulses (the means zero to e times. Then the 0.30	t T ₂		
18	Life	I.R.	More than	3,000ΜΩ	humidity					
		Dielectric Strength		nce with item No.4 to 35°C. Relative humidity: 45 to 75%. A	Pretreat Perform let sit form	AC volt AC volt r 24± tmen a he r 24±	Applied Voltag 312.5V(r.m.s.), except that onc age is increased to AC1,000V(425V(r.m.s.), except that onc age is increased to AC1,000V(2 hrs. at *¹room condition, the t for X7R char. at treatment at 150±18°C for 22 hrs. at *¹room condition.	e each hour the (r.m.s.) for 0.1 sec. e each hour the (r.m.s.) for 0.1 sec. n measure.		

^{*1 &}quot;Room condition" Temperature : 15 to 35℃, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page

	tinued from		Specifications	Toot Make a
No.	Item		•	Test Method
	Ca	apacitance hange	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Before this test, the test shown in the following is performedItem 11 Adhesive Strength of Termination (apply force is 5N) -Item 13 Deflection
	ading D	D.F. Ω	Char. Specification X7R D.F.≤0.05 SL Q≥275+5/2C*² (C<30pF)	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±2°d hrs. Remove and let sit for 24±2 hrs. at *¹room condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150±10°C for 60±5 min. and then
	1.	.R.	More than $3{,}000M\Omega$	let sit for 24±2 hrs. at *'room condition.
		ielectric strength	In accordance with item No.4	
20	ctive ammabilit <u>y</u>	У	The cheese-cloth should not be on fire.	The capacitor should be individually wrapped in at least one but not more than two complete layers of cheese-cloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 min. after the last discharge. C1,2: 1μF±10% C3: 0.033μF±5% 10kV L1 to 4: 1.5mH±20% 16A Rod core choke Ct: 3μF±5% 10kV R: 100Ω±2% Cx: Capacitor under test UAC: UR±5% F: Fuse, Rated 16A UR: Rated Voltage Ut: Voltage applied to Ct Ux Type Ui GB, GD 2.5kV GC, GF 5kV
21	assive ammabilit <u>y</u>	У	The burning time should not exceed 30 sec. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec. Length of flame: 12±1mm Gas burner : Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas : Butane gas Purity 95% min. Test Specimen Tissue About 10mm Thick Board

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

■ Capacitance-Temperature Characteristics

■ Impedance-Frequency Characteristics

GRM Series (X7R Char. 630V)

GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

Continued from the preceding page.

■ Impedance-Frequency Characteristics

GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

■ Capacitance-AC Voltage Characteristics

GA3 Series (Type GD/GF, X7R char.)

Package

Taping is standard packaging method.

■ Minimum Quantity Guide

		Dimensions (mm)			Quantity (pcs.)		
Part Nu	mber		Diffierisions (filit	"	φ180m	m reel	
GRM18		L	W	Т	Paper Tape	Embossed Tape	
	GRM18	1.6	0.8	0.8	4,000	-	
	GRM21	2.0	4.05	1.0	4,000	-	
	GRIVIZI	2.0	1.25	1.25	-	3,000	
				1.0	4,000	-	
	GRM31/GR731	3.2	1.6	1.25	-	3,000	
				1.6	-	2,000	
				1.0	4,000	-	
	GRM32	3.2	2.5	1.25	-	3,000	
/ledium-voltage	GRW32	3.2		1.5	-	2,000	
				2.0	-	1,000	
	GRM42/GR442	4.5	2.0	1.0	-	3,000	
				1.5	-	2,000	
				2.0	-	2,000	
	GRM43/GR443	4.5	3.2	1.5	-	1,000	
				2.0	-	1,000	
				2.5	-	500	
	GRM55	5.7	5.0	2.0	-	1,000	
	GA242	4.5	2.0	1.5	-	2,000	
AC250V	GA243	4.5	0.0	1.5	-	1,000	
ACZOUV	GAZ43	4.0	3.2	2.0	-	1,000	
	GA255	5.7	5.0	2.0	-	1,000	
	GA342	4.5	2.0	1.5	-	2,000	
	GA342	4.0	2.0	2.0	-	2,000	
	GA343	4.5	3.2	1.5	-	1,000	
Safety Std.	GA343	4.0	3.2	2.0	-	1,000	
Recognition	GA352	5.7	2.8	1.5	-	1,000	
				1.5	-	1,000	
	GA355	5.7	5.0	2.0	-	1,000	
				2.7	-	500	

■ Tape Carrier Packaging

(1) Appearance of Taping

① Embossed Tape

Package

Continued from the preceding page.

(2) Dimensions of Tape

① Embossed Tape

8mm width 4mm pitch Tape

Part Number	A*	B*
GRM21 (T≧1.25mm)	1.45	2.25
GRM31/GR731 (T≥1.25mm)	2.0	3.6
GRM32 (T≧1.25mm)	2.9	3.6

*Nominal Value

12mm width 8mm/4mm pitch Tape

Part Number	A*	B*
GRM42/GR442/GA242/GA342	2.5	5.1
GRM43/GR443/GA243/GA343	3.6	4.9
GA352	3.2	6.1
GRM55/GA255/GA355	5.4	6.1

^{*1 4.0±0.1}mm in case of GRM42/GR442/GA242/GA342

*Nominal Value

(in mm)

2 Paper Tape

Part Number	A*	B*
GRM18	1.05	1.85
GRM21 (T=1.0mm)	1.45	2.25
GRM31/GR731 (T=1.0mm)	2.0	3.6
GRM32 (T=1.0mm)	2.9	3.6

*Nominal value (in mm)

(3) Dimensions of Reel

Package

- Continued from the preceding page.
- (4) Taping Method
 - ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
 - 2 Part of the leader and part of the empty tape shall be attached to the end of the tape as shown at right.
 - 3 The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
 - 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
 - 5 The top tape or cover tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocket holes.
 - 6 Cumulative tolerance of sprocket holes, 10 pitches:
 - 7 Peeling off force: 0.1 to 0.6N in the direction shown at right.

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

■ Storage and Operating Conditions

Operating and storage environment Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors

where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%. Use capacitors within 6 months. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

- 1. Vibration and impact Do not expose a capacitor to excessive shock or vibration during use.
- 2. Do not directly touch the chip capacitor, especially the ceramic body. Residue from hands/fingers may create a short circuit environment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat

(1) In case of X7R char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as selfgenerated heat is within 20°C on the condition of atmosphere temperature 25°C. When measuring, use a thermocouple of small thermal capacity-K of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

(2) In case of C0G char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage should be less than the value shown in figure at right.

In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

Continued from the preceding page.

(3) In case of U2J char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz (less than 100kHz in case of rated voltage: DC3.15kV). The applied voltage should be less than the value shown in figure below.

In case of non-sine wave which includes a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

Continued from the preceding page.

(4) In case of GRM series SL char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz. The applied voltage should be less than the value shown in figure at right.

In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

3. Test condition for AC withstanding Voltage

(1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

(2) Voltage applied method

The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the figure at right -

Continued from the preceding page.

4. Fail-safe

Failure of a capacitor may result in a short circuit. Be sure to provide an appropriate fail-safe function such as a fuse on your product to help eliminate possible electric shock, fire, or fumes.

Please consider using fuses on each AC line if the capacitors are used between the AC input lines and earth (line bypass capacitors), to prepare for the worst case, such as a short circuit.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Caution (Soldering and Mounting)

1. Vibration and Impact

Do not expose a capacitor to excessive shock or vibration during use.

2. Circuit Board Material

In case that chip size is 4.5 × 3.2mm or more, a metalboard or metal-frame such as Aluminum board is not available because soldering heat causes expansion and shrinkage of a board or frame, which will cause a chip to crack.

3. Land Layout for Cropping PC Board Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

4. Soldering

If a chip component is heated or cooled abruptly during soldering, it may crack due to the thermal shock. To prevent this, follow our recommendations below for adequate soldering conditions. Carefully perform preheating so that temperature difference (ΔT) between the solder and component surface is in the following range. The smaller the temperatures difference (ΔT) between the solder and component surface is, the smaller the influence on the chip is. When components are immersed in solvent after mounting, please set the slow cooling process to keep the temperature difference within 100°C.

process to morp and temperature amount of the					
Chip Size Soldering Method	3.2×1.6mm and under	3.2×2.5mm and over			
Reflow Method or Soldering Iron Method	ΔT≦190°C	ΔT≦130°C			
Flow Method or Dip Soldering Method	ΔΤ≦150°C				

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

5. Soldering Iron

When soldering chips with a soldering iron, it should be performed in following conditions.

And pre-heating shown in clause 4.

Item	Conditions		
Chip Size	≦2.0×1.25mm	≧3.2×1.6mm	
Temperature of Iron tip	300°C max.	270°C max.	
Soldering Iron Wattage	20W max.		
Diameter of Iron tip	φ 3.0mm max.		
Soldering Time	3 sec. max.		
Caution	Do not allow the iron tip to directly touch the ceramic element.		

■ Notice (Soldering and Mounting)

1. Construction of Board Pattern

After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Construction and Dimensions of Pattern (Example)

Preparing slit helps flux cleaning and resin coating on the back of the capacitor.

Flow Soldering

L×W	а	b	С
1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4

Flow soldering: 3.2×1.6 or less available.

Reflow Soldering

L×W	a	b	С	d	е
1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	-	-
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	-	-
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	1.0-2.0	3.2-3.7
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	1.0-2.0	4.1-4.6
4.5×2.0	2.8-3.4	1.2-1.4	1.4-1.8	1.0-2.8	3.6-4.1
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0	1.0-2.8	4.8-5.3
5.7×2.8	4.0-4.6	1.4-1.6	2.1-2.6	1.0-4.0	4.4-4.9
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	1.0-4.0	6.6-7.1

(in mm)

Land Layout to Prevent Excessive Solder

Notice

Continued from the preceding page.

- 2. Mounting of Chips
- Thickness of adhesives applied Keep thickness of adhesives applied (50-105µm or more) to reinforce the adhesive contact considering the thickness of the termination or capacitor (20-70µm) and the land pattern (30-35µm).
- Mechanical shock of the chip placer When the positioning claws and pick-up nozzle are worn, the load is applied to the chip while positioning is concentrated in one position, thus causing cracks, breakage, faulty positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble. An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.

3. Soldering

(1) Limit of losing effective area of the terminations and conditions needed for soldering.

> Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain at a maximum of 25% on all edge length A-B-C-D-A of part with A, B, C, D, shown in the Figure below.

In case of repeated soldering, the accumulated soldering time must be within the range shown at right.

(2) Flux

 Please use it after confirming there is no problem in the reliability of the product beforehand with a intended equipment. The residue of flux might cause the decrease in nonconductivity and the corrosion of an external electrode, etc.

(3) Solder Amount

1 Flow soldering and iron soldering Use as little solder as possible, and confirm that the solder is securely placed.

Notice

Continued from the preceding page.

2 Reflow soldering

When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations.

4. Cleaning

Please confirm there is no problem in the reliability of the product beforehand when cleaning it with a intended equipment.

The residue after it cleaning it might cause the decrease in the surface resistance of the chip and the corrosion of the electrode part, etc. As a result might cause reliability to deteriorate. Please confirm there is no problem with a intended equipment in the ultrasonic cleansing beforehand

5. Resin Coating

Please use it after confirming there is no influence on the product with a intended equipment beforehand when the resin coating and molding.

The chip crack might be caused at the cool and heat cycle by bias of the amount of spreading of the resin and spreading thickness.

The resin for the coating and molding must use the thing that as the stress when stiffening is small, and the hygroscopic is as low as possible.

■ Rating

- 1. Capacitance change of capacitor
- (1) In case of X7R char.

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit. Please contact us if you need detailed information.

(2) In case of any char. except X7R Capacitance might change a little depending on the surrounding temperature or an applied voltage. Please contact us if you intend to use this product in a strict time constant circuit.

2. Performance check by equipment

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 (X7R char.) ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

ISO 9001 Certifications

■ Qualified Standards

The products listed here have been produced by ISO 9001 certified factory.

Plant		
Fukui Murata Mfg. Co., Ltd.		
Izumo Murata Mfg. Co., Ltd.		
Okayama Murata Mfg. Co., Ltd.		
Murata Electronics Singapore (Pte.) Ltd.		
Murata Amazonia Industria E Comercio Ltda.		
Suzhou Murata Electronics Co., Ltd.		
Beijing Murata Electronics Co., Ltd.		

C02E.pdf

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

♠ Note:

1. Export Control

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage to a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment 3 Undersea equipment
- 2 Aerospace equipment 4 Power plant equipment
- (5) Medical equipment
- 6 Transportation equipment (vehicles, trains, ships, etc.)
- Traffic signal equipment
- 8 Disaster prevention / crime prevention equipment
- Data-processing equipment
- (1) Application of similar complexity and/or reliability requirements to the applications listed in the above
- 3. Product specifications in this catalog are as of July 2005. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product
- 4. Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/